A spectral estimate for the Dirac operator on Riemannian flows

Nicolas Ginoux; Georges Habib

Open Mathematics (2010)

  • Volume: 8, Issue: 5, page 950-965
  • ISSN: 2391-5455

Abstract

top
We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.

How to cite

top

Nicolas Ginoux, and Georges Habib. "A spectral estimate for the Dirac operator on Riemannian flows." Open Mathematics 8.5 (2010): 950-965. <http://eudml.org/doc/269726>.

@article{NicolasGinoux2010,
abstract = {We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.},
author = {Nicolas Ginoux, Georges Habib},
journal = {Open Mathematics},
keywords = {Foliations; Sasakian manifolds; Spin geometry; Spectral geometry; Estimation of eigenvalues - upper and lower bounds; spectral estimates for the Dirac operator; Riemannian flows; Killing spinors},
language = {eng},
number = {5},
pages = {950-965},
title = {A spectral estimate for the Dirac operator on Riemannian flows},
url = {http://eudml.org/doc/269726},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Nicolas Ginoux
AU - Georges Habib
TI - A spectral estimate for the Dirac operator on Riemannian flows
JO - Open Mathematics
PY - 2010
VL - 8
IS - 5
SP - 950
EP - 965
AB - We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.
LA - eng
KW - Foliations; Sasakian manifolds; Spin geometry; Spectral geometry; Estimation of eigenvalues - upper and lower bounds; spectral estimates for the Dirac operator; Riemannian flows; Killing spinors
UR - http://eudml.org/doc/269726
ER -

References

top
  1. [1] Alexandrov B., Grantcharov G., Ivanov S., An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifolds admitting a parallel one-form, J. Geom. Phys., 1998, 28(3–4), 263–270 http://dx.doi.org/10.1016/S0393-0440(97)00080-6 Zbl0934.58026
  2. [2] Ammann B., Bär C., The Dirac operator on nilmanifolds and collapsing circle bundles, Ann. Global Anal. Geom., 1998, 16(3), 221–253 http://dx.doi.org/10.1023/A:1006553302362 Zbl0911.58037
  3. [3] Bär C., Metrics with harmonic spinors, Geom. Funct. Anal., 1996, 6(6), 899–942 http://dx.doi.org/10.1007/BF02246994 Zbl0867.53037
  4. [4] Bär C., Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom., 1998, 16(6), 573–596 http://dx.doi.org/10.1023/A:1006550532236 Zbl0921.58065
  5. [5] Bär C., Gauduchon P., Moroianu A., Generalized cylinders in semi-Riemannian and spin geometry, Math. Z., 2005, 249(3), 545–580 http://dx.doi.org/10.1007/s00209-004-0718-0 Zbl1068.53030
  6. [6] Belgun F.A., On the metric structure of non-Kähler complex surfaces, Math. Ann., 2000, 317(1), 1–40 http://dx.doi.org/10.1007/s002080050357 Zbl0988.32017
  7. [7] Boyer C.P., Galicki K., On Sasakian-Einstein geometry, Internat. J. Math., 2000, 11(7), 873–909 http://dx.doi.org/10.1142/S0129167X00000477 Zbl1022.53038
  8. [8] Boyer C.P., Galicki K., Matzeu P., On η-Einstein Sasakian geometry, Comm. Math. Phys., 2006, 262(1), 177–208 http://dx.doi.org/10.1007/s00220-005-1459-6 Zbl1103.53022
  9. [9] Carrière Y., Flots riemanniens, In: Structure transverse des feuilletages, Toulouse 1982, Astérisque, 1984, 116, 31–52 
  10. [10] Chavel I., Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press, Orlando, 1984 
  11. [11] Friedrich T., Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr., 1980, 97(1), 117–146 http://dx.doi.org/10.1002/mana.19800970111 Zbl0462.53027
  12. [12] Friedrich T., Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math., 1984, 48, 57–62 Zbl0542.53026
  13. [13] Geiges H., Normal contact structures on 3-manifolds, Tôhoku Math. J., 1997, 49(3), 415–422 http://dx.doi.org/10.2748/tmj/1178225112 Zbl0897.53024
  14. [14] Ginoux N., Habib G., Geometric aspects of transversal Killing spinors on Riemannian flows, Abh. Math. Sem. Univ. Hamburg, 2008, 78(1), 69–90 http://dx.doi.org/10.1007/s12188-008-0006-8 Zbl1177.53025
  15. [15] Habib G., Tenseur d’impulsion-énergie et feuilletages, Ph.D. thesis, Université Henri Poincaré - Nancy 1, 2006 
  16. [16] Hijazi O., Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys., 1995, 16(1), 27–38 http://dx.doi.org/10.1016/0393-0440(94)00019-Z 
  17. [17] Kim E.C., Friedrich T., The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys., 2000, 33(1–2), 128–172 http://dx.doi.org/10.1016/S0393-0440(99)00043-1 Zbl0961.53023
  18. [18] Okumura M., Some remarks on space with a certain contact structure, Tôhoku Math. J., 1962, 14(2), 135–145 http://dx.doi.org/10.2748/tmj/1178244168 Zbl0119.37701
  19. [19] O’Neill B., The fundamental equations of a submersion, Michigan Math. J., 1966, 13(4), 459–469 http://dx.doi.org/10.1307/mmj/1028999604 
  20. [20] Pfäffle F., The Dirac spectrum of Bieberbach manifolds, J. Geom. Phys., 2000, 35(4), 367–385 http://dx.doi.org/10.1016/S0393-0440(00)00005-X Zbl0984.58017
  21. [21] Reinhart B.L., Foliated manifolds with bundle-like metrics, Ann. of Math., 1959, 69(1), 119–132 http://dx.doi.org/10.2307/1970097 Zbl0122.16604
  22. [22] Tanno S., The topology of contact Riemannian manifolds, Illinois J. Math., 1968, 12(4), 700–717 Zbl0165.24703
  23. [23] Tondeur P., Foliations on Riemannian Manifolds, Springer, Berlin, 1988 
  24. [24] Trautman A., Spinors and the Dirac operator on hypersurfaces. I: General theory, J. Math. Phys., 1992, 33(12), 4011–4019 http://dx.doi.org/10.1063/1.529852 Zbl0769.58055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.