The Cauchy Harish-Chandra Integral, for the pair 𝔲 p , q , 𝔲 1

Andrzej Daszkiewicz; Tomasz Przebinda

Open Mathematics (2007)

  • Volume: 5, Issue: 4, page 654-664
  • ISSN: 2391-5455

Abstract

top
For the dual pair considered, the Cauchy Harish-Chandra Integral, as a distribution on the Lie algebra, is the limit of the holomorphic extension of the reciprocal of the determinant. We compute that limit explicitly in terms of the Harish-Chandra orbital integrals.

How to cite

top

Andrzej Daszkiewicz, and Tomasz Przebinda. "The Cauchy Harish-Chandra Integral, for the pair \[\mathfrak {u}_{p,q} ,\mathfrak {u}_1 \]." Open Mathematics 5.4 (2007): 654-664. <http://eudml.org/doc/269730>.

@article{AndrzejDaszkiewicz2007,
abstract = {For the dual pair considered, the Cauchy Harish-Chandra Integral, as a distribution on the Lie algebra, is the limit of the holomorphic extension of the reciprocal of the determinant. We compute that limit explicitly in terms of the Harish-Chandra orbital integrals.},
author = {Andrzej Daszkiewicz, Tomasz Przebinda},
journal = {Open Mathematics},
keywords = {Orbital integrals; dual pairs},
language = {eng},
number = {4},
pages = {654-664},
title = {The Cauchy Harish-Chandra Integral, for the pair \[\mathfrak \{u\}\_\{p,q\} ,\mathfrak \{u\}\_1 \]},
url = {http://eudml.org/doc/269730},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Andrzej Daszkiewicz
AU - Tomasz Przebinda
TI - The Cauchy Harish-Chandra Integral, for the pair \[\mathfrak {u}_{p,q} ,\mathfrak {u}_1 \]
JO - Open Mathematics
PY - 2007
VL - 5
IS - 4
SP - 654
EP - 664
AB - For the dual pair considered, the Cauchy Harish-Chandra Integral, as a distribution on the Lie algebra, is the limit of the holomorphic extension of the reciprocal of the determinant. We compute that limit explicitly in terms of the Harish-Chandra orbital integrals.
LA - eng
KW - Orbital integrals; dual pairs
UR - http://eudml.org/doc/269730
ER -

References

top
  1. [1] A. Bouaziz: “Intégrales orbitales sur les algèbres de Lie réductives”, Invent. Math., Vol. 115, (1994), pp. 163–207. http://dx.doi.org/10.1007/BF01231757 Zbl0814.22005
  2. [2] A. Daszkiewicz and T. Przebinda: “The oscillator character formula, for isometry groups of split forms in deep stable range”, Invent. Math., Vol. 123, (1996), pp. 349–376. Zbl0845.22007
  3. [3] R. Howe: “Transcending classical invariant theory”, J. Amer. Math. Soc., Vol. 2, (1989), pp. 535–552. http://dx.doi.org/10.2307/1990942 Zbl0716.22006
  4. [4] L. Hörmander: The analysis of linear partial differential operators, I, Springer Verlag, Berlin, 1983. 
  5. [5] T. Przebinda: “A Cauchy Harish-Chandra integral, for a real reductive dual pair”, Invent. Math., Vol. 141, (2000), pp. 299–363. http://dx.doi.org/10.1007/s002220000070 Zbl0953.22014
  6. [6] W. Schmid: “On the characters of the discrete series. The Hermitian symmetric case”, Invent. Math., Vol. 30, (1975), pp. 47–144. http://dx.doi.org/10.1007/BF01389847 Zbl0324.22007
  7. [7] V.S. Varadarajan: Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer Verlag, Berlin-New York, 1977. Zbl0354.43001
  8. [8] N. Wallach: Real Reductive Groups, I, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.