On colored set partitions of type B n
Open Mathematics (2014)
- Volume: 12, Issue: 9, page 1372-1381
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDavid Wang. "On colored set partitions of type B n." Open Mathematics 12.9 (2014): 1372-1381. <http://eudml.org/doc/269733>.
@article{DavidWang2014,
abstract = {Generalizing Reiner’s notion of set partitions of type B n, we define colored B n-partitions by coloring the elements in and not in the zero-block respectively. Considering the generating function of colored B n-partitions, we get the exact formulas for the expectation and variance of the number of non-zero-blocks in a random colored B n-partition. We find an asymptotic expression of the total number of colored B n-partitions up to an error of O(n −1/2log7/2 n], and prove that the centralized and normalized number of non-zero-blocks is asymptotic normal over colored B n-partitions.},
author = {David Wang},
journal = {Open Mathematics},
keywords = {Set partition; Limiting distribution; set partition; limiting distribution},
language = {eng},
number = {9},
pages = {1372-1381},
title = {On colored set partitions of type B n},
url = {http://eudml.org/doc/269733},
volume = {12},
year = {2014},
}
TY - JOUR
AU - David Wang
TI - On colored set partitions of type B n
JO - Open Mathematics
PY - 2014
VL - 12
IS - 9
SP - 1372
EP - 1381
AB - Generalizing Reiner’s notion of set partitions of type B n, we define colored B n-partitions by coloring the elements in and not in the zero-block respectively. Considering the generating function of colored B n-partitions, we get the exact formulas for the expectation and variance of the number of non-zero-blocks in a random colored B n-partition. We find an asymptotic expression of the total number of colored B n-partitions up to an error of O(n −1/2log7/2 n], and prove that the centralized and normalized number of non-zero-blocks is asymptotic normal over colored B n-partitions.
LA - eng
KW - Set partition; Limiting distribution; set partition; limiting distribution
UR - http://eudml.org/doc/269733
ER -
References
top- [1] Bender E.A., Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A, 1973, 15, 91–111 http://dx.doi.org/10.1016/0097-3165(73)90038-1
- [2] Benoumhani M., On Whitney numbers of Dowling lattices, Discrete Math., 1996, 159(1–3), 13–33 http://dx.doi.org/10.1016/0012-365X(95)00095-E
- [3] Björner A., Brenti F., Combinatorics of Coxeter Groups, Grad. Texts in Math., 231, Springer, New York, 2005 Zbl1110.05001
- [4] Björner A., Sagan B.E., Subspace arrangements of type B n and D n, J. Algebraic Combin., 1996, 5(4), 291–314 Zbl0864.57031
- [5] de Bruijn N.G., Asymptotic Methods in Analysis, 3rd ed., Dover, New York, 1981 Zbl0556.41021
- [6] Chen W.Y.C., Wang D.G.L., The limiting distribution of the q-derangement numbers, European J. Combin., 2010, 31(8), 2006–2013 http://dx.doi.org/10.1016/j.ejc.2010.05.009 Zbl1227.05070
- [7] Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E., On the Lambert W function, Adv. Comput. Math., 1996, 5(4), 329–359 http://dx.doi.org/10.1007/BF02124750 Zbl0863.65008
- [8] Dowling T.A., A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B, 1973, 14, 61–86 http://dx.doi.org/10.1016/S0095-8956(73)80007-3 Zbl0247.05019
- [9] Drmota M., Gittenberger B., Klausner T., Extended admissible functions and Gaussian limiting distributions, Math. Comp., 2005, 74(252), 1953–1966 http://dx.doi.org/10.1090/S0025-5718-05-01744-8 Zbl1078.41025
- [10] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, Cambridge, 2009 http://dx.doi.org/10.1017/CBO9780511801655
- [11] Gittenberger B., Mandlburger J., Hayman admissible functions in several variables, Electron. J. Combin., 2006, 13(1), #106 Zbl1113.05010
- [12] Goresky M., MacPherson R., Stratified Morse Theory, Ergeb. Math. Grenzgeb., 14, Springer, Berlin, 1988 http://dx.doi.org/10.1007/978-3-642-71714-7
- [13] Harper L.H., Stirling behavior is asymptotically normal, Ann. Math. Statist., 1967, 38, 410–414 http://dx.doi.org/10.1214/aoms/1177698956 Zbl0154.43703
- [14] Harris B., Schoenfeld L., Asymptotic expansions for the coefficients of analytic functions, Illinois J. Math., 1968, 12, 264–277 Zbl0202.35801
- [15] Hayman W.K., A generalisation of Stirling’s formula, J. Reine Angew. Math., 1956, 196, 67–95 Zbl0072.06901
- [16] Humphreys J.E., Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math., 29, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511623646 Zbl0725.20028
- [17] Karlin S., Total Positivity, I, Stanford University Press, Stanford, 1968
- [18] Liu L.L., Wang Y., A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math., 2007, 38(4), 542–560 http://dx.doi.org/10.1016/j.aam.2006.02.003 Zbl1123.05009
- [19] Mansour T., Combinatorics of Set Partitions, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, 2013
- [20] Odlyzko A.M., Asymptotic enumeration methods, In: Handbook of Combinatorics, 2, Elsevier, Amsterdam, 1995, 1063–1229 Zbl0845.05005
- [21] Pitman J., Probabilistic bounds on the coefficients of polynomials with only real zeros, J. Combin. Theory Ser. A, 1997, 77(2), 279–303 http://dx.doi.org/10.1006/jcta.1997.2747 Zbl0866.60016
- [22] Reiner V., Non-crossing partitions for classical reflection groups, Discrete Math., 1997, 177(1–3), 195–222 http://dx.doi.org/10.1016/S0012-365X(96)00365-2
- [23] Sachkov V.N., Probabilistic Methods in Combinatorial Analysis, Encyclopedia Math. Appl., 56, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511666193 Zbl0874.60020
- [24] Salvy B., Shackell J., Symbolic asymptotics: multiseries of inverse functions, J. Symbolic Comput., 1999, 27(6), 543–563 http://dx.doi.org/10.1006/jsco.1999.0281 Zbl1013.68298
- [25] Schoenberg I.J., On the zeros of the generating functions of multiply positive sequences and functions, Ann. of Math., 1955, 62(3), 447–471 http://dx.doi.org/10.2307/1970073 Zbl0065.34301
- [26] Schrödinger E., Statistical Thermodynamics, 2nd ed., Dublin Institute for Advanced Studies, Cambridge University Press, New York, 1962
- [27] Stanley R.P., Enumerative Combinatorics, I, 2nd ed., Cambridge Stud. Adv. Math., 49, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511805967
- [28] White J.A., On the Complement of r-disjoint k-parabolic Subspace Arrangements, PhD thesis, Arizona State University, 2010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.