On colored set partitions of type B n

David Wang

Open Mathematics (2014)

  • Volume: 12, Issue: 9, page 1372-1381
  • ISSN: 2391-5455

Abstract

top
Generalizing Reiner’s notion of set partitions of type B n, we define colored B n-partitions by coloring the elements in and not in the zero-block respectively. Considering the generating function of colored B n-partitions, we get the exact formulas for the expectation and variance of the number of non-zero-blocks in a random colored B n-partition. We find an asymptotic expression of the total number of colored B n-partitions up to an error of O(n −1/2log7/2 n], and prove that the centralized and normalized number of non-zero-blocks is asymptotic normal over colored B n-partitions.

How to cite

top

David Wang. "On colored set partitions of type B n." Open Mathematics 12.9 (2014): 1372-1381. <http://eudml.org/doc/269733>.

@article{DavidWang2014,
abstract = {Generalizing Reiner’s notion of set partitions of type B n, we define colored B n-partitions by coloring the elements in and not in the zero-block respectively. Considering the generating function of colored B n-partitions, we get the exact formulas for the expectation and variance of the number of non-zero-blocks in a random colored B n-partition. We find an asymptotic expression of the total number of colored B n-partitions up to an error of O(n −1/2log7/2 n], and prove that the centralized and normalized number of non-zero-blocks is asymptotic normal over colored B n-partitions.},
author = {David Wang},
journal = {Open Mathematics},
keywords = {Set partition; Limiting distribution; set partition; limiting distribution},
language = {eng},
number = {9},
pages = {1372-1381},
title = {On colored set partitions of type B n},
url = {http://eudml.org/doc/269733},
volume = {12},
year = {2014},
}

TY - JOUR
AU - David Wang
TI - On colored set partitions of type B n
JO - Open Mathematics
PY - 2014
VL - 12
IS - 9
SP - 1372
EP - 1381
AB - Generalizing Reiner’s notion of set partitions of type B n, we define colored B n-partitions by coloring the elements in and not in the zero-block respectively. Considering the generating function of colored B n-partitions, we get the exact formulas for the expectation and variance of the number of non-zero-blocks in a random colored B n-partition. We find an asymptotic expression of the total number of colored B n-partitions up to an error of O(n −1/2log7/2 n], and prove that the centralized and normalized number of non-zero-blocks is asymptotic normal over colored B n-partitions.
LA - eng
KW - Set partition; Limiting distribution; set partition; limiting distribution
UR - http://eudml.org/doc/269733
ER -

References

top
  1. [1] Bender E.A., Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A, 1973, 15, 91–111 http://dx.doi.org/10.1016/0097-3165(73)90038-1 
  2. [2] Benoumhani M., On Whitney numbers of Dowling lattices, Discrete Math., 1996, 159(1–3), 13–33 http://dx.doi.org/10.1016/0012-365X(95)00095-E 
  3. [3] Björner A., Brenti F., Combinatorics of Coxeter Groups, Grad. Texts in Math., 231, Springer, New York, 2005 Zbl1110.05001
  4. [4] Björner A., Sagan B.E., Subspace arrangements of type B n and D n, J. Algebraic Combin., 1996, 5(4), 291–314 Zbl0864.57031
  5. [5] de Bruijn N.G., Asymptotic Methods in Analysis, 3rd ed., Dover, New York, 1981 Zbl0556.41021
  6. [6] Chen W.Y.C., Wang D.G.L., The limiting distribution of the q-derangement numbers, European J. Combin., 2010, 31(8), 2006–2013 http://dx.doi.org/10.1016/j.ejc.2010.05.009 Zbl1227.05070
  7. [7] Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E., On the Lambert W function, Adv. Comput. Math., 1996, 5(4), 329–359 http://dx.doi.org/10.1007/BF02124750 Zbl0863.65008
  8. [8] Dowling T.A., A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B, 1973, 14, 61–86 http://dx.doi.org/10.1016/S0095-8956(73)80007-3 Zbl0247.05019
  9. [9] Drmota M., Gittenberger B., Klausner T., Extended admissible functions and Gaussian limiting distributions, Math. Comp., 2005, 74(252), 1953–1966 http://dx.doi.org/10.1090/S0025-5718-05-01744-8 Zbl1078.41025
  10. [10] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, Cambridge, 2009 http://dx.doi.org/10.1017/CBO9780511801655 
  11. [11] Gittenberger B., Mandlburger J., Hayman admissible functions in several variables, Electron. J. Combin., 2006, 13(1), #106 Zbl1113.05010
  12. [12] Goresky M., MacPherson R., Stratified Morse Theory, Ergeb. Math. Grenzgeb., 14, Springer, Berlin, 1988 http://dx.doi.org/10.1007/978-3-642-71714-7 
  13. [13] Harper L.H., Stirling behavior is asymptotically normal, Ann. Math. Statist., 1967, 38, 410–414 http://dx.doi.org/10.1214/aoms/1177698956 Zbl0154.43703
  14. [14] Harris B., Schoenfeld L., Asymptotic expansions for the coefficients of analytic functions, Illinois J. Math., 1968, 12, 264–277 Zbl0202.35801
  15. [15] Hayman W.K., A generalisation of Stirling’s formula, J. Reine Angew. Math., 1956, 196, 67–95 Zbl0072.06901
  16. [16] Humphreys J.E., Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math., 29, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511623646 Zbl0725.20028
  17. [17] Karlin S., Total Positivity, I, Stanford University Press, Stanford, 1968 
  18. [18] Liu L.L., Wang Y., A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math., 2007, 38(4), 542–560 http://dx.doi.org/10.1016/j.aam.2006.02.003 Zbl1123.05009
  19. [19] Mansour T., Combinatorics of Set Partitions, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, 2013 
  20. [20] Odlyzko A.M., Asymptotic enumeration methods, In: Handbook of Combinatorics, 2, Elsevier, Amsterdam, 1995, 1063–1229 Zbl0845.05005
  21. [21] Pitman J., Probabilistic bounds on the coefficients of polynomials with only real zeros, J. Combin. Theory Ser. A, 1997, 77(2), 279–303 http://dx.doi.org/10.1006/jcta.1997.2747 Zbl0866.60016
  22. [22] Reiner V., Non-crossing partitions for classical reflection groups, Discrete Math., 1997, 177(1–3), 195–222 http://dx.doi.org/10.1016/S0012-365X(96)00365-2 
  23. [23] Sachkov V.N., Probabilistic Methods in Combinatorial Analysis, Encyclopedia Math. Appl., 56, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511666193 Zbl0874.60020
  24. [24] Salvy B., Shackell J., Symbolic asymptotics: multiseries of inverse functions, J. Symbolic Comput., 1999, 27(6), 543–563 http://dx.doi.org/10.1006/jsco.1999.0281 Zbl1013.68298
  25. [25] Schoenberg I.J., On the zeros of the generating functions of multiply positive sequences and functions, Ann. of Math., 1955, 62(3), 447–471 http://dx.doi.org/10.2307/1970073 Zbl0065.34301
  26. [26] Schrödinger E., Statistical Thermodynamics, 2nd ed., Dublin Institute for Advanced Studies, Cambridge University Press, New York, 1962 
  27. [27] Stanley R.P., Enumerative Combinatorics, I, 2nd ed., Cambridge Stud. Adv. Math., 49, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511805967 
  28. [28] White J.A., On the Complement of r-disjoint k-parabolic Subspace Arrangements, PhD thesis, Arizona State University, 2010 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.