Dichotomies for Lorentz spaces

Szymon Głąb; Filip Strobin; Chan Yang

Open Mathematics (2013)

  • Volume: 11, Issue: 7, page 1228-1242
  • ISSN: 2391-5455

Abstract

top
Assume that L p,q, are Lorentz spaces. This article studies the question: what is the size of the set . We prove the following dichotomy: either or E is σ-porous in , provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either or E is meager. This is a generalization of the results for classical L p spaces.

How to cite

top

Szymon Głąb, Filip Strobin, and Chan Yang. "Dichotomies for Lorentz spaces." Open Mathematics 11.7 (2013): 1228-1242. <http://eudml.org/doc/269740>.

@article{SzymonGłąb2013,
abstract = {Assume that L p,q, $L^\{p_1 ,q_1 \} ,...,L^\{p_n ,q_n \} $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \lbrace (f_1 ,...,f_n ) \in L^\{p_\{1,\} q_1 \} \times \cdots \times L^\{p_n ,q_n \} :f_1 \cdots f_n \in L^\{p,q\} \rbrace $. We prove the following dichotomy: either $E = L^\{p_1 ,q_1 \} \times \cdots \times L^\{p_n ,q_n \} $ or E is σ-porous in $L^\{p_1 ,q_1 \} \times \cdots \times L^\{p_n ,q_n \} $, provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either $E = L^\{p_1 ,q_1 \} \times \cdots \times L^\{p_n ,q_n \} $ or E is meager. This is a generalization of the results for classical L p spaces.},
author = {Szymon Głąb, Filip Strobin, Chan Yang},
journal = {Open Mathematics},
keywords = {Lorentz spaces; Integration; Baire category; Porosity; integration; porosity},
language = {eng},
number = {7},
pages = {1228-1242},
title = {Dichotomies for Lorentz spaces},
url = {http://eudml.org/doc/269740},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Szymon Głąb
AU - Filip Strobin
AU - Chan Yang
TI - Dichotomies for Lorentz spaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1228
EP - 1242
AB - Assume that L p,q, $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \lbrace (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \rbrace $. We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $, provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.
LA - eng
KW - Lorentz spaces; Integration; Baire category; Porosity; integration; porosity
UR - http://eudml.org/doc/269740
ER -

References

top
  1. [1] Balcerzak M., Wachowicz A., Some examples of meager sets in Banach spaces, Real Anal. Exchange, 2000/01, 26(2), 877–884 Zbl1046.46013
  2. [2] Grafakos L., Classical Fourier Analysis, 2nd ed., Grad. Texts in Math., 249, Springer, New York, 2008 Zbl1220.42001
  3. [3] GŁab S., Strobin F., Dichotomies for L p spaces, J. Math. Anal. Appl., 2010, 368(1), 382–390 http://dx.doi.org/10.1016/j.jmaa.2010.02.011[Crossref] Zbl1200.46028
  4. [4] Jachymski J., A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces, Studia Math., 2005, 170(3), 303–320 http://dx.doi.org/10.4064/sm170-3-7[Crossref] Zbl1090.46015
  5. [5] Zajíček L., Porosity and σ-porosity, Real Anal. Exchange, 1987/1988, 13(2), 314–350 
  6. [6] Zajíček L., On σ-porous sets in abstract spaces, Abstr. Appl. Anal., 2005, 5, 509–534 http://dx.doi.org/10.1155/AAA.2005.509[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.