Dichotomies for Lorentz spaces

Szymon Głąb; Filip Strobin; Chan Yang

Open Mathematics (2013)

  • Volume: 11, Issue: 7, page 1228-1242
  • ISSN: 2391-5455

Abstract

top
Assume that L p,q, L p 1 , q 1 , . . . , L p n , q n are Lorentz spaces. This article studies the question: what is the size of the set E = { ( f 1 , . . . , f n ) L p 1 , q 1 × × L p n , q n : f 1 f n L p , q } . We prove the following dichotomy: either E = L p 1 , q 1 × × L p n , q n or E is σ-porous in L p 1 , q 1 × × L p n , q n , provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either E = L p 1 , q 1 × × L p n , q n or E is meager. This is a generalization of the results for classical L p spaces.

How to cite

top

Szymon Głąb, Filip Strobin, and Chan Yang. "Dichotomies for Lorentz spaces." Open Mathematics 11.7 (2013): 1228-1242. <http://eudml.org/doc/269740>.

@article{SzymonGłąb2013,
abstract = {Assume that L p,q, $L^\{p_1 ,q_1 \} ,...,L^\{p_n ,q_n \} $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \lbrace (f_1 ,...,f_n ) \in L^\{p_\{1,\} q_1 \} \times \cdots \times L^\{p_n ,q_n \} :f_1 \cdots f_n \in L^\{p,q\} \rbrace $. We prove the following dichotomy: either $E = L^\{p_1 ,q_1 \} \times \cdots \times L^\{p_n ,q_n \} $ or E is σ-porous in $L^\{p_1 ,q_1 \} \times \cdots \times L^\{p_n ,q_n \} $, provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either $E = L^\{p_1 ,q_1 \} \times \cdots \times L^\{p_n ,q_n \} $ or E is meager. This is a generalization of the results for classical L p spaces.},
author = {Szymon Głąb, Filip Strobin, Chan Yang},
journal = {Open Mathematics},
keywords = {Lorentz spaces; Integration; Baire category; Porosity; integration; porosity},
language = {eng},
number = {7},
pages = {1228-1242},
title = {Dichotomies for Lorentz spaces},
url = {http://eudml.org/doc/269740},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Szymon Głąb
AU - Filip Strobin
AU - Chan Yang
TI - Dichotomies for Lorentz spaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1228
EP - 1242
AB - Assume that L p,q, $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \lbrace (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \rbrace $. We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $, provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.
LA - eng
KW - Lorentz spaces; Integration; Baire category; Porosity; integration; porosity
UR - http://eudml.org/doc/269740
ER -

References

top
  1. [1] Balcerzak M., Wachowicz A., Some examples of meager sets in Banach spaces, Real Anal. Exchange, 2000/01, 26(2), 877–884 Zbl1046.46013
  2. [2] Grafakos L., Classical Fourier Analysis, 2nd ed., Grad. Texts in Math., 249, Springer, New York, 2008 Zbl1220.42001
  3. [3] GŁab S., Strobin F., Dichotomies for L p spaces, J. Math. Anal. Appl., 2010, 368(1), 382–390 http://dx.doi.org/10.1016/j.jmaa.2010.02.011[Crossref] Zbl1200.46028
  4. [4] Jachymski J., A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces, Studia Math., 2005, 170(3), 303–320 http://dx.doi.org/10.4064/sm170-3-7[Crossref] Zbl1090.46015
  5. [5] Zajíček L., Porosity and σ-porosity, Real Anal. Exchange, 1987/1988, 13(2), 314–350 
  6. [6] Zajíček L., On σ-porous sets in abstract spaces, Abstr. Appl. Anal., 2005, 5, 509–534 http://dx.doi.org/10.1155/AAA.2005.509[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.