On certain properties of linear iterative equations
Jean-Claude Ndogmo; Fazal Mahomed
Open Mathematics (2014)
- Volume: 12, Issue: 4, page 648-657
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Cariñena J.F., Grabowski J., de Lucas J., Superposition rules for higher-order systems and their applications, J. Phys. A, 2012, 45(18), #185202 http://dx.doi.org/10.1088/1751-8113/45/18/185202 Zbl1248.34008
- [2] Krause J., Michel L., Equations différentielles linéaires d’ordre n > 2 ayant une algèbre de Lie de symétrie de dimension n + 4, C. R. Acad. Sci. Paris, 1988, 307(18), 905–910 Zbl0662.34010
- [3] Krause J., Michel L., Classification of the symmetries of ordinary differential equations, In: Group Theoretical Methods in Physics, Moscow, June 4–9, 1990, Lecture Notes in Phys., 382, Springer, Berlin, 1991, 251–262
- [4] Leach P.G.L., Andriopoulos K., The Ermakov equation: a commentary, Appl. Anal. Discrete Math., 2008, 2(2), 146–157 http://dx.doi.org/10.2298/AADM0802146L Zbl1199.34006
- [5] Lie S., Classification und Integration von gewöhnlichen Differentialgleichungen zwischen xy, die eine Gruppe von Transformationen gestatten. III, Archiv for Mathematik og Naturvidenskab, 1883, 8, 371–458 Zbl15.0751.03
- [6] Lie S., Classification und Integration von gewöhnlichen Differentialgleichungen zwischen xy, die eine Gruppe von Transformationen gestetten, Math. Ann., 1888, 32(2), 213–281 http://dx.doi.org/10.1007/BF01444068
- [7] de Lucas J., Sardón C., On Lie systems and Kummer-Schwarz equations, J. Math. Phys., 2013, 54(3), #033505 http://dx.doi.org/10.1063/1.4794280 Zbl1312.34032
- [8] Mahomed F.M., Leach P.G.L., Symmetry Lie algebras of nth order ordinary differential equations, J. Math. Anal. Appl., 1990, 151(1), 80–107 http://dx.doi.org/10.1016/0022-247X(90)90244-A Zbl0719.34018
- [9] Ndogmo J.C., Equivalence transformations of the Euler-Bernoulli equation, Nonlinear Anal. Real World Appl., 2012, 13(5), 2172–2177 http://dx.doi.org/10.1016/j.nonrwa.2012.01.012 Zbl1257.35006
- [10] Ndogmo J.C., Some results on equivalence groups, J. Appl. Math., 2012, #484805 Zbl1280.34041
- [11] Schwarz F., Solving second order ordinary differential equations with maximal symmetry group, Computing, 1999, 62(1), 1–10 http://dx.doi.org/10.1007/s006070050009 Zbl0934.34001
- [12] Schwarz F., Equivalence classes, symmetries and solutions of linear third-order differential equations, Computing, 2002, 69(2), 141–162 http://dx.doi.org/10.1007/s00607-002-1454-0 Zbl1025.34005
- [13] Sebbar A., Sebbar A., Eisenstein series and modular differential equations, Canad. Math. Bull., 2012, 55(2), 400–409 http://dx.doi.org/10.4153/CMB-2011-091-3 Zbl1272.11055
- [14] Tsitskishvili A., Solution of the Schwarz differential equation, Mem. Differential Equations Math. Phys., 1997, 11, 129–156 Zbl0911.34004