Inverse problems on star-type graphs: differential operators of different orders on different edges

Vyacheslav Yurko

Open Mathematics (2014)

  • Volume: 12, Issue: 3, page 483-499
  • ISSN: 2391-5455

Abstract

top
We study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.

How to cite

top

Vyacheslav Yurko. "Inverse problems on star-type graphs: differential operators of different orders on different edges." Open Mathematics 12.3 (2014): 483-499. <http://eudml.org/doc/269745>.

@article{VyacheslavYurko2014,
abstract = {We study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.},
author = {Vyacheslav Yurko},
journal = {Open Mathematics},
keywords = {Geometrical graphs; Differential operators; Inverse spectral problems; Weyl-type matrices; inverse spectral problems; differential operators on graphs; Weyl function},
language = {eng},
number = {3},
pages = {483-499},
title = {Inverse problems on star-type graphs: differential operators of different orders on different edges},
url = {http://eudml.org/doc/269745},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Vyacheslav Yurko
TI - Inverse problems on star-type graphs: differential operators of different orders on different edges
JO - Open Mathematics
PY - 2014
VL - 12
IS - 3
SP - 483
EP - 499
AB - We study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.
LA - eng
KW - Geometrical graphs; Differential operators; Inverse spectral problems; Weyl-type matrices; inverse spectral problems; differential operators on graphs; Weyl function
UR - http://eudml.org/doc/269745
ER -

References

top
  1. [1] Avdonin S., Kurasov P., Inverse problems for quantum trees, Inverse Probl. Imaging, 2008, 2(1), 1–21 http://dx.doi.org/10.3934/ipi.2008.2.1 Zbl1148.35356
  2. [2] Beals R., Deift P., Tomei C., Direct and Inverse Scattering on the Line, Math. Surveys Monogr., 28, American Mathematical Society, Providence, 1988 http://dx.doi.org/10.1090/surv/028 Zbl0679.34018
  3. [3] Belishev M.I., Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 2004, 20(3), 647–672 http://dx.doi.org/10.1088/0266-5611/20/3/002 
  4. [4] Brown B.M., Weikard R., A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2005, 461(2062), 3231–3243 http://dx.doi.org/10.1098/rspa.2005.1513 Zbl05213594
  5. [5] Buterin S.A., Freiling G., Inverse scattering problem for the Sturm-Liouville operator on a noncompact star-type graph, Schriftenreihe des Instituts für Mathematik, SM-DU-725, Universität-Duisburg-Essen, 2011, 1–17 Zbl1292.34011
  6. [6] Chadan K., Colton D., Päivärinta L., Rundell W., An Introduction to Inverse Scattering and Inverse Spectral Problems SIAM Monogr. Math. Model. Comput., SIAM, Philadelphia, 1997 http://dx.doi.org/10.1137/1.9780898719710 Zbl0870.35121
  7. [7] Freiling G., Ignatyev M., Spectral analysis for Sturm-Liouville operator on sun-type graphs, Inverse Problems, 2011, 27(9), #095003 http://dx.doi.org/10.1088/0266-5611/27/9/095003 Zbl1251.34022
  8. [8] Freiling G., Yurko V., Inverse Sturm-Liouville Problems and their Applications, NOVA Science, Huntington, 2001 Zbl1037.34005
  9. [9] Freiling G., Yurko V., Inverse problems for differential operators on trees with general matching conditions, Appl. Anal., 2007, 86(6), 653–667 http://dx.doi.org/10.1080/00036810701303976 Zbl1130.34005
  10. [10] Freiling G., Yurko V., Inverse problems for Sturm-Liouville operators on noncompact trees, Results Math., 2007, 50(3–4), 195–212 http://dx.doi.org/10.1007/s00025-007-0246-4 
  11. [11] Gerasimenko N.I., The inverse scattering problem on a noncompact graph, Theoret. and Math. Phys., 1988, 75(2), 460–470 http://dx.doi.org/10.1007/BF01017484 
  12. [12] Kottos T., Smilansky U., Quantum chaos on graphs, Phys. Rev. Lett., 1997, 79(24), 4794–4797 http://dx.doi.org/10.1103/PhysRevLett.79.4794 
  13. [13] Kuchment P., Quantum graphs: I. Some basic structures, Waves in Random and Complex Media, 2004, 14(1), S107–S128 http://dx.doi.org/10.1088/0959-7174/14/1/014 
  14. [14] Langese J., Leugering G., Schmidt E.J.P.G., Modeling Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems Control Found. Appl., Birkhäuser, Boston, 1994 
  15. [15] Levitan B.M., Inverse Sturm-Liouville Problems, VSP, Zeist, 1987 
  16. [16] Levitan B.M., Sargsyan I.S., Introduction to Spectral Theory, Transl. Math. Monogr., 39, American Mathematical Society, Providence, 1975 
  17. [17] Marchenko V.A., Sturm-Liouville Operators and Applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986 http://dx.doi.org/10.1007/978-3-0348-5485-6 
  18. [18] Marchenko V., Mochizuki K., Trooshin I., Inverse scattering on a graph containing circle, In: Analytic Methods of Analysis and Differential Equations, Minsk, September 13–19, 2006, Camb. Sci. Publ., Cambridge, 2008, 237–243 
  19. [19] Montroll E.W., Quantum theory on a network. I. A solvable model whose wavefunctions are elementary functions, J. Math. Phys., 1970, 11(2), 635–648 http://dx.doi.org/10.1063/1.1665178 
  20. [20] Naimark M.A., Linear Differential Operators, 2nd ed., Nauka, Moscow, 1969 (in Russian) Zbl0057.07102
  21. [21] Pokornyi Yu.V., Beloglazova T.V., Dikareva E.V., Perlovskaya T.V., Green function for a locally interacting system of ordinary equations of different orders, Math. Notes, 2003, 74(1–2), 141–143 http://dx.doi.org/10.1023/A:1025087604412 Zbl1063.34024
  22. [22] Pokornyi Yu.V., Borovskikh A.V., Differential equations on networks (geometric graphs), J. Math. Sci. (N.Y.), 2004, 119(6), 691–718 http://dx.doi.org/10.1023/B:JOTH.0000012752.77290.fa Zbl1083.34024
  23. [23] Pokornyi Yu.V., Pryadiev V.L., The qualitative Sturm-Liouville theory on spatial networks, J. Math. Sci. (N.Y.), 2004, 119(6), 788–835 http://dx.doi.org/10.1023/B:JOTH.0000012756.25200.56 Zbl1088.34020
  24. [24] Ramm A.G., Inverse Problems, Math. Anal. Tech. Appl. Eng., Springer, New York, 2005 Zbl1162.35384
  25. [25] Yang C.-F., Inverse spectral problems for the Sturm-Liouville operators on a d-star graph, J. Math. Anal. Appl., 2010, 365(2), 742–749 http://dx.doi.org/10.1016/j.jmaa.2009.12.016 Zbl1195.34023
  26. [26] Yurko V.A., Inverse Spectral Problems for Differential Operators and their Applications, Anal. Methods Spec. Funct., 2, Gordon and Breach, Amsterdam, 2000 Zbl0952.34001
  27. [27] Yurko V., Method of Spectral Mappings in the Inverse Problem Theory, Inverse Ill-Posed Probl. Ser., VSP, Utrecht, 2002 http://dx.doi.org/10.1515/9783110940961 
  28. [28] Yurko V., Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 2005, 21(3), 1075–1086 http://dx.doi.org/10.1088/0266-5611/21/3/017 
  29. [29] Yurko V.A., An inverse problem for higher order differential operators on star-type graphs, Inverse Problems, 2007, 23(3), 893–903 http://dx.doi.org/10.1088/0266-5611/23/3/003 
  30. [30] Yurko V.A., Inverse problems for differential of any order on trees, Math. Notes, 2008, 83(1–2), 125–137 http://dx.doi.org/10.1134/S000143460801015X 
  31. [31] Yurko V., Inverse problems for Sturm-Liouville operators on bush-type graphs, Inverse Problems, 2009, 25(10), #105008 http://dx.doi.org/10.1088/0266-5611/25/10/105008 Zbl1235.34045
  32. [32] Yurko V., An inverse problem for Sturm-Liouville differential operators on A-graphs, Appl. Math. Lett., 2010, 23(8), 875–879 http://dx.doi.org/10.1016/j.aml.2010.03.026 Zbl1192.35190
  33. [33] Yurko V.A., Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inverse Ill-Posed Probl., 2010, 18(3), 245–261 Zbl1279.34029
  34. [34] Yurko V.A., Inverse spectral problems for arbitrary order differential operators on noncompact trees, J. Inverse Ill-Posed Probl., 2012, 20(1), 111–131 Zbl1279.34030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.