Inverse problems on star-type graphs: differential operators of different orders on different edges
Open Mathematics (2014)
- Volume: 12, Issue: 3, page 483-499
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topVyacheslav Yurko. "Inverse problems on star-type graphs: differential operators of different orders on different edges." Open Mathematics 12.3 (2014): 483-499. <http://eudml.org/doc/269745>.
@article{VyacheslavYurko2014,
abstract = {We study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.},
author = {Vyacheslav Yurko},
journal = {Open Mathematics},
keywords = {Geometrical graphs; Differential operators; Inverse spectral problems; Weyl-type matrices; inverse spectral problems; differential operators on graphs; Weyl function},
language = {eng},
number = {3},
pages = {483-499},
title = {Inverse problems on star-type graphs: differential operators of different orders on different edges},
url = {http://eudml.org/doc/269745},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Vyacheslav Yurko
TI - Inverse problems on star-type graphs: differential operators of different orders on different edges
JO - Open Mathematics
PY - 2014
VL - 12
IS - 3
SP - 483
EP - 499
AB - We study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.
LA - eng
KW - Geometrical graphs; Differential operators; Inverse spectral problems; Weyl-type matrices; inverse spectral problems; differential operators on graphs; Weyl function
UR - http://eudml.org/doc/269745
ER -
References
top- [1] Avdonin S., Kurasov P., Inverse problems for quantum trees, Inverse Probl. Imaging, 2008, 2(1), 1–21 http://dx.doi.org/10.3934/ipi.2008.2.1 Zbl1148.35356
- [2] Beals R., Deift P., Tomei C., Direct and Inverse Scattering on the Line, Math. Surveys Monogr., 28, American Mathematical Society, Providence, 1988 http://dx.doi.org/10.1090/surv/028 Zbl0679.34018
- [3] Belishev M.I., Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 2004, 20(3), 647–672 http://dx.doi.org/10.1088/0266-5611/20/3/002
- [4] Brown B.M., Weikard R., A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2005, 461(2062), 3231–3243 http://dx.doi.org/10.1098/rspa.2005.1513 Zbl05213594
- [5] Buterin S.A., Freiling G., Inverse scattering problem for the Sturm-Liouville operator on a noncompact star-type graph, Schriftenreihe des Instituts für Mathematik, SM-DU-725, Universität-Duisburg-Essen, 2011, 1–17 Zbl1292.34011
- [6] Chadan K., Colton D., Päivärinta L., Rundell W., An Introduction to Inverse Scattering and Inverse Spectral Problems SIAM Monogr. Math. Model. Comput., SIAM, Philadelphia, 1997 http://dx.doi.org/10.1137/1.9780898719710 Zbl0870.35121
- [7] Freiling G., Ignatyev M., Spectral analysis for Sturm-Liouville operator on sun-type graphs, Inverse Problems, 2011, 27(9), #095003 http://dx.doi.org/10.1088/0266-5611/27/9/095003 Zbl1251.34022
- [8] Freiling G., Yurko V., Inverse Sturm-Liouville Problems and their Applications, NOVA Science, Huntington, 2001 Zbl1037.34005
- [9] Freiling G., Yurko V., Inverse problems for differential operators on trees with general matching conditions, Appl. Anal., 2007, 86(6), 653–667 http://dx.doi.org/10.1080/00036810701303976 Zbl1130.34005
- [10] Freiling G., Yurko V., Inverse problems for Sturm-Liouville operators on noncompact trees, Results Math., 2007, 50(3–4), 195–212 http://dx.doi.org/10.1007/s00025-007-0246-4
- [11] Gerasimenko N.I., The inverse scattering problem on a noncompact graph, Theoret. and Math. Phys., 1988, 75(2), 460–470 http://dx.doi.org/10.1007/BF01017484
- [12] Kottos T., Smilansky U., Quantum chaos on graphs, Phys. Rev. Lett., 1997, 79(24), 4794–4797 http://dx.doi.org/10.1103/PhysRevLett.79.4794
- [13] Kuchment P., Quantum graphs: I. Some basic structures, Waves in Random and Complex Media, 2004, 14(1), S107–S128 http://dx.doi.org/10.1088/0959-7174/14/1/014
- [14] Langese J., Leugering G., Schmidt E.J.P.G., Modeling Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems Control Found. Appl., Birkhäuser, Boston, 1994
- [15] Levitan B.M., Inverse Sturm-Liouville Problems, VSP, Zeist, 1987
- [16] Levitan B.M., Sargsyan I.S., Introduction to Spectral Theory, Transl. Math. Monogr., 39, American Mathematical Society, Providence, 1975
- [17] Marchenko V.A., Sturm-Liouville Operators and Applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986 http://dx.doi.org/10.1007/978-3-0348-5485-6
- [18] Marchenko V., Mochizuki K., Trooshin I., Inverse scattering on a graph containing circle, In: Analytic Methods of Analysis and Differential Equations, Minsk, September 13–19, 2006, Camb. Sci. Publ., Cambridge, 2008, 237–243
- [19] Montroll E.W., Quantum theory on a network. I. A solvable model whose wavefunctions are elementary functions, J. Math. Phys., 1970, 11(2), 635–648 http://dx.doi.org/10.1063/1.1665178
- [20] Naimark M.A., Linear Differential Operators, 2nd ed., Nauka, Moscow, 1969 (in Russian) Zbl0057.07102
- [21] Pokornyi Yu.V., Beloglazova T.V., Dikareva E.V., Perlovskaya T.V., Green function for a locally interacting system of ordinary equations of different orders, Math. Notes, 2003, 74(1–2), 141–143 http://dx.doi.org/10.1023/A:1025087604412 Zbl1063.34024
- [22] Pokornyi Yu.V., Borovskikh A.V., Differential equations on networks (geometric graphs), J. Math. Sci. (N.Y.), 2004, 119(6), 691–718 http://dx.doi.org/10.1023/B:JOTH.0000012752.77290.fa Zbl1083.34024
- [23] Pokornyi Yu.V., Pryadiev V.L., The qualitative Sturm-Liouville theory on spatial networks, J. Math. Sci. (N.Y.), 2004, 119(6), 788–835 http://dx.doi.org/10.1023/B:JOTH.0000012756.25200.56 Zbl1088.34020
- [24] Ramm A.G., Inverse Problems, Math. Anal. Tech. Appl. Eng., Springer, New York, 2005 Zbl1162.35384
- [25] Yang C.-F., Inverse spectral problems for the Sturm-Liouville operators on a d-star graph, J. Math. Anal. Appl., 2010, 365(2), 742–749 http://dx.doi.org/10.1016/j.jmaa.2009.12.016 Zbl1195.34023
- [26] Yurko V.A., Inverse Spectral Problems for Differential Operators and their Applications, Anal. Methods Spec. Funct., 2, Gordon and Breach, Amsterdam, 2000 Zbl0952.34001
- [27] Yurko V., Method of Spectral Mappings in the Inverse Problem Theory, Inverse Ill-Posed Probl. Ser., VSP, Utrecht, 2002 http://dx.doi.org/10.1515/9783110940961
- [28] Yurko V., Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 2005, 21(3), 1075–1086 http://dx.doi.org/10.1088/0266-5611/21/3/017
- [29] Yurko V.A., An inverse problem for higher order differential operators on star-type graphs, Inverse Problems, 2007, 23(3), 893–903 http://dx.doi.org/10.1088/0266-5611/23/3/003
- [30] Yurko V.A., Inverse problems for differential of any order on trees, Math. Notes, 2008, 83(1–2), 125–137 http://dx.doi.org/10.1134/S000143460801015X
- [31] Yurko V., Inverse problems for Sturm-Liouville operators on bush-type graphs, Inverse Problems, 2009, 25(10), #105008 http://dx.doi.org/10.1088/0266-5611/25/10/105008 Zbl1235.34045
- [32] Yurko V., An inverse problem for Sturm-Liouville differential operators on A-graphs, Appl. Math. Lett., 2010, 23(8), 875–879 http://dx.doi.org/10.1016/j.aml.2010.03.026 Zbl1192.35190
- [33] Yurko V.A., Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inverse Ill-Posed Probl., 2010, 18(3), 245–261 Zbl1279.34029
- [34] Yurko V.A., Inverse spectral problems for arbitrary order differential operators on noncompact trees, J. Inverse Ill-Posed Probl., 2012, 20(1), 111–131 Zbl1279.34030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.