The norm convergence of a Magnus expansion method

András Bátkai; Eszter Sikolya

Open Mathematics (2012)

  • Volume: 10, Issue: 1, page 150-158
  • ISSN: 2391-5455

Abstract

top
We consider numerical approximation to the solution of non-autonomous evolution equations. The order of convergence of the simplest possible Magnus method is investigated.

How to cite

top

András Bátkai, and Eszter Sikolya. "The norm convergence of a Magnus expansion method." Open Mathematics 10.1 (2012): 150-158. <http://eudml.org/doc/269757>.

@article{AndrásBátkai2012,
abstract = {We consider numerical approximation to the solution of non-autonomous evolution equations. The order of convergence of the simplest possible Magnus method is investigated.},
author = {András Bátkai, Eszter Sikolya},
journal = {Open Mathematics},
keywords = {Magnus method; Evolution family; C0-semigroups; evolution family},
language = {eng},
number = {1},
pages = {150-158},
title = {The norm convergence of a Magnus expansion method},
url = {http://eudml.org/doc/269757},
volume = {10},
year = {2012},
}

TY - JOUR
AU - András Bátkai
AU - Eszter Sikolya
TI - The norm convergence of a Magnus expansion method
JO - Open Mathematics
PY - 2012
VL - 10
IS - 1
SP - 150
EP - 158
AB - We consider numerical approximation to the solution of non-autonomous evolution equations. The order of convergence of the simplest possible Magnus method is investigated.
LA - eng
KW - Magnus method; Evolution family; C0-semigroups; evolution family
UR - http://eudml.org/doc/269757
ER -

References

top
  1. [1] Bátkai A., Csomós P., Farkas B., Nickel G., Operator splitting for non-autonomous evolution equations, J. Funct. Anal., 2011, 260(7), 2163–2190 http://dx.doi.org/10.1016/j.jfa.2010.10.008 Zbl1232.65103
  2. [2] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer, New York, 2000 Zbl0952.47036
  3. [3] Faragó I., Horváth R., Havasi Á., Numerical solution of the Maxwell equations in time-varying medium using Magnus expansion, Cent. Eur. J. Math., 2012, 10(1), 137–149 http://dx.doi.org/10.2478/s11533-011-0074-3 Zbl1243.78049
  4. [4] Hochbruck M., Lubich Ch., On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal., 2003, 41(3), 945–963 http://dx.doi.org/10.1137/S0036142902403875 Zbl1049.65064
  5. [5] Hochbruck M., Ostermann A., Exponential integrators, Acta Numer., 2010, 19, 209–286 http://dx.doi.org/10.1017/S0962492910000048 Zbl1242.65109
  6. [6] Iserles A., Marthinsen A., Nørsett S.P., On the implementation of the method of Magnus series for linear differential equations, BIT, 1999, 39(2), 281–304 http://dx.doi.org/10.1023/A:1022393913721 Zbl0933.65077
  7. [7] Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A., Lie-group methods, Acta Numer., 2000, 9, 215–365 http://dx.doi.org/10.1017/S0962492900002154 Zbl1064.65147
  8. [8] Magnus W., On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 1954, 7(4), 649–673 http://dx.doi.org/10.1002/cpa.3160070404 Zbl0056.34102
  9. [9] Nickel G., Evolution semigroups and product formulas for nonautonomous Cauchy problems, Math. Nachr., 2000, 212, 101–116 http://dx.doi.org/10.1002/(SICI)1522-2616(200004)212:1<101::AID-MANA101>3.0.CO;2-3 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.