Second order BVPs with state dependent impulses via lower and upper functions
Open Mathematics (2014)
- Volume: 12, Issue: 1, page 128-140
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topIrena Rachůnková, and Jan Tomeček. "Second order BVPs with state dependent impulses via lower and upper functions." Open Mathematics 12.1 (2014): 128-140. <http://eudml.org/doc/269759>.
@article{IrenaRachůnková2014,
abstract = {The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.},
author = {Irena Rachůnková, Jan Tomeček},
journal = {Open Mathematics},
keywords = {Impulsive differential equation; State-dependent impulses; Upper and lower functions method; Upper and lower solutions method; Dirichlet problem; Second order ODE; impulsive differential equation; state dependent impulses; upper and lower functions method; upper and lower solutions methos; second order ODE},
language = {eng},
number = {1},
pages = {128-140},
title = {Second order BVPs with state dependent impulses via lower and upper functions},
url = {http://eudml.org/doc/269759},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Irena Rachůnková
AU - Jan Tomeček
TI - Second order BVPs with state dependent impulses via lower and upper functions
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 128
EP - 140
AB - The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.
LA - eng
KW - Impulsive differential equation; State-dependent impulses; Upper and lower functions method; Upper and lower solutions method; Dirichlet problem; Second order ODE; impulsive differential equation; state dependent impulses; upper and lower functions method; upper and lower solutions methos; second order ODE
UR - http://eudml.org/doc/269759
ER -
References
top- [1] Afonso S.M., Bonotto E.M., Federson M., Schwabik Š., Discontinuous local semiflows for Kurzweil equations leading to LaSalle’s invariance principle for differential systems with impulses at variable times, J. Differential Equations, 2011, 250(7), 2969–3001 http://dx.doi.org/10.1016/j.jde.2011.01.019 Zbl1213.34019
- [2] Akhmet M.U., On the general problem of stability for impulsive differential equations, J. Math. Anal. Appl., 2003, 288(1), 182–196 http://dx.doi.org/10.1016/j.jmaa.2003.08.001 Zbl1047.34094
- [3] Akhmetov M.U., Zafer A., Stability of the zero solution of impulsive differential equations by the Lyapunov second method, J. Math. Anal. Appl., 2000, 248(1), 69–82 http://dx.doi.org/10.1006/jmaa.2000.6864
- [4] Bainov D., Simeonov P., Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monogr. Surveys Pure Appl. Math., 66, Longman Scientific & Technical, Harlow, 1993 Zbl0815.34001
- [5] Bajo I., Liz E., Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl., 1996, 204(1), 65–73 http://dx.doi.org/10.1006/jmaa.1996.0424 Zbl0876.34020
- [6] Belley J.-M., Virgilio M., Periodic Duffing delay equations with state dependent impulses, J. Math. Anal. Appl., 2005, 306(2), 646–662 http://dx.doi.org/10.1016/j.jmaa.2004.10.023 Zbl1082.34068
- [7] Belley J.-M., Virgilio M., Periodic Liénard-type delay equations with state-dependent impulses, Nonlinear Anal., 2006, 64(3), 568–589 http://dx.doi.org/10.1016/j.na.2005.06.025 Zbl1103.34059
- [8] Benchohra M., Graef J.R., Ntouyas S.K., Ouahab A., Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2005, 12(3–4), 383–396 Zbl1085.34007
- [9] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A., Impulsive functional differential equations with variable times, Comput. Math. Appl., 2004, 47(10–11), 1659–1665 http://dx.doi.org/10.1016/j.camwa.2004.06.013 Zbl1070.34108
- [10] Córdova-Lepe F., Pinto M., González-Olivares E., A new class of differential equations with impulses at instants dependent on preceding pulses. Applications to management of renewable resources, Nonlinear Anal. Real World Appl., 2012, 13(5), 2313–2322 http://dx.doi.org/10.1016/j.nonrwa.2012.01.026 Zbl1257.34034
- [11] Devi J.V., Vatsala A.S., Generalized quasilinearization for an impulsive differential equation with variable moments of impulse, Dynam. Systems Appl., 2003, 12(3–4), 369–382
- [12] Domoshnitsky A., Drakhlin M., Litsyn E., Nonoscillation and positivity of solutions to first order state-dependent differential equations with impulses in variable moments, J. Differential Equations, 2006, 228(1), 39–48 http://dx.doi.org/10.1016/j.jde.2006.05.009 Zbl1104.34056
- [13] Frigon M., O’Regan D., Impulsive differential equations with variable times, Nonlinear Anal., 1996, 26(12), 1913–1922 http://dx.doi.org/10.1016/0362-546X(95)00053-X
- [14] Frigon M., O’Regan D., First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 1999, 233(2), 730–739 http://dx.doi.org/10.1006/jmaa.1999.6336
- [15] Frigon M., O’Regan D., Second order Sturm-Liouville BVP’s with impulses at variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2001, 8(2), 149–159 Zbl0996.34015
- [16] Gabor G., The existence of viable trajectories in state-dependent impulsive systems, Nonlinear Anal., 2010, 72(9–10), 3828–3836 http://dx.doi.org/10.1016/j.na.2010.01.019
- [17] Kaul S., Lakshmikantham V., Leela S., Extremal solutions, comparison principle and stability criteria for impulsive differential equations with variable times, Nonlinear Anal., 1994, 22(10), 1263–1270 http://dx.doi.org/10.1016/0362-546X(94)90109-0 Zbl0807.34064
- [18] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, Ser. Modern Appl. Math., 6, World Scientific, Teaneck, 1989
- [19] Lakshmikantham V., Papageorgiou N.S., Vasundhara Devi J., The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments, Appl. Anal., 1993, 51(1–4), 41–58 http://dx.doi.org/10.1080/00036819308840203 Zbl0793.34013
- [20] Li Y., Cong F., Lin Z., Boundary value problems for impulsive differential equations, Nonlinear Anal. TMA, 1997, 29(11), 1253–1264 http://dx.doi.org/10.1016/S0362-546X(96)00177-0 Zbl0889.34019
- [21] Liu L., Sun J., Existence of periodic solution for a harvested system with impulses at variable times, Phys. Lett. A, 2006, 360(1), 105–108 http://dx.doi.org/10.1016/j.physleta.2006.07.080 Zbl1236.34017
- [22] Rachůnková I., Tomeček J., A new approach to BVPs with state-dependent impulses, Bound. Value Probl., 2013, #22 Zbl1287.34019
- [23] Samoilenko A.M., Perestyuk N.A., Impulsive Differential Equations, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 14, World Scientific River Edge, 1995
- [24] Qi J., Fu X., Existence of limit cycles of impulsive differential equations with impulses at variable times, Nonlinear Anal., 2001, 44(3), 345–353 http://dx.doi.org/10.1016/S0362-546X(99)00268-0 Zbl0993.34043
- [25] Vatsala A.S., Vasundhara Devi J., Generalized monotone technique for an impulsive differential equation with variable moments of impulse, Nonlinear Stud., 2002, 9(3), 319–330 Zbl1022.34005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.