Second order BVPs with state dependent impulses via lower and upper functions

Irena Rachůnková; Jan Tomeček

Open Mathematics (2014)

  • Volume: 12, Issue: 1, page 128-140
  • ISSN: 2391-5455

Abstract

top
The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.

How to cite

top

Irena Rachůnková, and Jan Tomeček. "Second order BVPs with state dependent impulses via lower and upper functions." Open Mathematics 12.1 (2014): 128-140. <http://eudml.org/doc/269759>.

@article{IrenaRachůnková2014,
abstract = {The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.},
author = {Irena Rachůnková, Jan Tomeček},
journal = {Open Mathematics},
keywords = {Impulsive differential equation; State-dependent impulses; Upper and lower functions method; Upper and lower solutions method; Dirichlet problem; Second order ODE; impulsive differential equation; state dependent impulses; upper and lower functions method; upper and lower solutions methos; second order ODE},
language = {eng},
number = {1},
pages = {128-140},
title = {Second order BVPs with state dependent impulses via lower and upper functions},
url = {http://eudml.org/doc/269759},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Irena Rachůnková
AU - Jan Tomeček
TI - Second order BVPs with state dependent impulses via lower and upper functions
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 128
EP - 140
AB - The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.
LA - eng
KW - Impulsive differential equation; State-dependent impulses; Upper and lower functions method; Upper and lower solutions method; Dirichlet problem; Second order ODE; impulsive differential equation; state dependent impulses; upper and lower functions method; upper and lower solutions methos; second order ODE
UR - http://eudml.org/doc/269759
ER -

References

top
  1. [1] Afonso S.M., Bonotto E.M., Federson M., Schwabik Š., Discontinuous local semiflows for Kurzweil equations leading to LaSalle’s invariance principle for differential systems with impulses at variable times, J. Differential Equations, 2011, 250(7), 2969–3001 http://dx.doi.org/10.1016/j.jde.2011.01.019 Zbl1213.34019
  2. [2] Akhmet M.U., On the general problem of stability for impulsive differential equations, J. Math. Anal. Appl., 2003, 288(1), 182–196 http://dx.doi.org/10.1016/j.jmaa.2003.08.001 Zbl1047.34094
  3. [3] Akhmetov M.U., Zafer A., Stability of the zero solution of impulsive differential equations by the Lyapunov second method, J. Math. Anal. Appl., 2000, 248(1), 69–82 http://dx.doi.org/10.1006/jmaa.2000.6864 
  4. [4] Bainov D., Simeonov P., Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monogr. Surveys Pure Appl. Math., 66, Longman Scientific & Technical, Harlow, 1993 Zbl0815.34001
  5. [5] Bajo I., Liz E., Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl., 1996, 204(1), 65–73 http://dx.doi.org/10.1006/jmaa.1996.0424 Zbl0876.34020
  6. [6] Belley J.-M., Virgilio M., Periodic Duffing delay equations with state dependent impulses, J. Math. Anal. Appl., 2005, 306(2), 646–662 http://dx.doi.org/10.1016/j.jmaa.2004.10.023 Zbl1082.34068
  7. [7] Belley J.-M., Virgilio M., Periodic Liénard-type delay equations with state-dependent impulses, Nonlinear Anal., 2006, 64(3), 568–589 http://dx.doi.org/10.1016/j.na.2005.06.025 Zbl1103.34059
  8. [8] Benchohra M., Graef J.R., Ntouyas S.K., Ouahab A., Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2005, 12(3–4), 383–396 Zbl1085.34007
  9. [9] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A., Impulsive functional differential equations with variable times, Comput. Math. Appl., 2004, 47(10–11), 1659–1665 http://dx.doi.org/10.1016/j.camwa.2004.06.013 Zbl1070.34108
  10. [10] Córdova-Lepe F., Pinto M., González-Olivares E., A new class of differential equations with impulses at instants dependent on preceding pulses. Applications to management of renewable resources, Nonlinear Anal. Real World Appl., 2012, 13(5), 2313–2322 http://dx.doi.org/10.1016/j.nonrwa.2012.01.026 Zbl1257.34034
  11. [11] Devi J.V., Vatsala A.S., Generalized quasilinearization for an impulsive differential equation with variable moments of impulse, Dynam. Systems Appl., 2003, 12(3–4), 369–382 
  12. [12] Domoshnitsky A., Drakhlin M., Litsyn E., Nonoscillation and positivity of solutions to first order state-dependent differential equations with impulses in variable moments, J. Differential Equations, 2006, 228(1), 39–48 http://dx.doi.org/10.1016/j.jde.2006.05.009 Zbl1104.34056
  13. [13] Frigon M., O’Regan D., Impulsive differential equations with variable times, Nonlinear Anal., 1996, 26(12), 1913–1922 http://dx.doi.org/10.1016/0362-546X(95)00053-X 
  14. [14] Frigon M., O’Regan D., First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 1999, 233(2), 730–739 http://dx.doi.org/10.1006/jmaa.1999.6336 
  15. [15] Frigon M., O’Regan D., Second order Sturm-Liouville BVP’s with impulses at variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2001, 8(2), 149–159 Zbl0996.34015
  16. [16] Gabor G., The existence of viable trajectories in state-dependent impulsive systems, Nonlinear Anal., 2010, 72(9–10), 3828–3836 http://dx.doi.org/10.1016/j.na.2010.01.019 
  17. [17] Kaul S., Lakshmikantham V., Leela S., Extremal solutions, comparison principle and stability criteria for impulsive differential equations with variable times, Nonlinear Anal., 1994, 22(10), 1263–1270 http://dx.doi.org/10.1016/0362-546X(94)90109-0 Zbl0807.34064
  18. [18] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, Ser. Modern Appl. Math., 6, World Scientific, Teaneck, 1989 
  19. [19] Lakshmikantham V., Papageorgiou N.S., Vasundhara Devi J., The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments, Appl. Anal., 1993, 51(1–4), 41–58 http://dx.doi.org/10.1080/00036819308840203 Zbl0793.34013
  20. [20] Li Y., Cong F., Lin Z., Boundary value problems for impulsive differential equations, Nonlinear Anal. TMA, 1997, 29(11), 1253–1264 http://dx.doi.org/10.1016/S0362-546X(96)00177-0 Zbl0889.34019
  21. [21] Liu L., Sun J., Existence of periodic solution for a harvested system with impulses at variable times, Phys. Lett. A, 2006, 360(1), 105–108 http://dx.doi.org/10.1016/j.physleta.2006.07.080 Zbl1236.34017
  22. [22] Rachůnková I., Tomeček J., A new approach to BVPs with state-dependent impulses, Bound. Value Probl., 2013, #22 Zbl1287.34019
  23. [23] Samoilenko A.M., Perestyuk N.A., Impulsive Differential Equations, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 14, World Scientific River Edge, 1995 
  24. [24] Qi J., Fu X., Existence of limit cycles of impulsive differential equations with impulses at variable times, Nonlinear Anal., 2001, 44(3), 345–353 http://dx.doi.org/10.1016/S0362-546X(99)00268-0 Zbl0993.34043
  25. [25] Vatsala A.S., Vasundhara Devi J., Generalized monotone technique for an impulsive differential equation with variable moments of impulse, Nonlinear Stud., 2002, 9(3), 319–330 Zbl1022.34005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.