Perturbation index of linear partial differential-algebraic equations with a hyperbolic part

Lutz Angermann; Joachim Rang

Open Mathematics (2007)

  • Volume: 5, Issue: 1, page 19-49
  • ISSN: 2391-5455

Abstract

top
This paper deals with linear partial differential-algebraic equations (PDAEs) which have a hyperbolic part. If the spatial differential operator satisfies a Gårding-type inequality in a suitable function space setting, a perturbation index can be defined. Theoretical and practical examples are considered.

How to cite

top

Lutz Angermann, and Joachim Rang. "Perturbation index of linear partial differential-algebraic equations with a hyperbolic part." Open Mathematics 5.1 (2007): 19-49. <http://eudml.org/doc/269780>.

@article{LutzAngermann2007,
abstract = {This paper deals with linear partial differential-algebraic equations (PDAEs) which have a hyperbolic part. If the spatial differential operator satisfies a Gårding-type inequality in a suitable function space setting, a perturbation index can be defined. Theoretical and practical examples are considered.},
author = {Lutz Angermann, Joachim Rang},
journal = {Open Mathematics},
keywords = {Partial differential-algebraic equations; perturbation index; partial differential-algebraic equations; hyperbolic part; Gårding-type inequality},
language = {eng},
number = {1},
pages = {19-49},
title = {Perturbation index of linear partial differential-algebraic equations with a hyperbolic part},
url = {http://eudml.org/doc/269780},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Lutz Angermann
AU - Joachim Rang
TI - Perturbation index of linear partial differential-algebraic equations with a hyperbolic part
JO - Open Mathematics
PY - 2007
VL - 5
IS - 1
SP - 19
EP - 49
AB - This paper deals with linear partial differential-algebraic equations (PDAEs) which have a hyperbolic part. If the spatial differential operator satisfies a Gårding-type inequality in a suitable function space setting, a perturbation index can be defined. Theoretical and practical examples are considered.
LA - eng
KW - Partial differential-algebraic equations; perturbation index; partial differential-algebraic equations; hyperbolic part; Gårding-type inequality
UR - http://eudml.org/doc/269780
ER -

References

top
  1. [1] G.K. Batchelor: An introduction to fluid dynamics, 2nd ed. Cambridge University Press, Cambridge, 1999. Zbl0958.76001
  2. [2] J.T. Beale, T. Kato and A. Majda: “Remarks on the breakdown of smooth solutions for the 3-D Euler equations”, Comm. Math. Phys., Vol. 94(1), (1984), pp. 61–66. http://dx.doi.org/10.1007/BF01212349 Zbl0573.76029
  3. [3] K.E. Brenan, S.L. Campbell and L.R. Petzold: Numerical Solution of Initial-Value Problems in DAEs, Classics In Applied Mathematics, Vol. 14 SIAM, Philadelphia, 1996. Zbl0844.65058
  4. [4] A. Favini and A. Yagi: Degenerate differential equations in Banach spaces, Marcel Dekker, New York-Basel-Hong Kong, 1999. 
  5. [5] K.O. Friedrichs: “Symmetric positive linear differential equations”, Comm. Pure Appl. Math, Vol. 11, (1958), pp. 333–418. Zbl0083.31802
  6. [6] E. Griepentrog, M. Hanke and R. März: Toward a better understanding of differential-algebraic equations (Introductory survey), Seminarberichte Nr. 92-1, Humboldt-Universität zu Berlin, Fachbereich Mathematik, Berlin, 1992. Zbl0749.34003
  7. [7] E. Griepentrog and R. März: Differential-algebraic equations and their numerical treatment, Teubner-Texte zur Mathematik, Vol. 88, Teubner, Leipzig, 1986. Zbl0629.65080
  8. [8] M. Günther and Y. Wagner: “Index concepts for linear mixed systems of Differential-algebraic and hyperbolic-type equations”, SIAM J. Sci. Comput., Vol. 22(5), (2000), pp. 1610–1629. http://dx.doi.org/10.1137/S1064827598349057 Zbl0981.65110
  9. [9] E. Hairer and G. Wanner: Solving ordinary differential equations II: Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, Vol. 14, 2nd edition, Springer-Verlag, Berlin, 1996. Zbl0859.65067
  10. [10] V. John, G. Matthies and J. Rang: “A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations”, Comput. Methods Appl. Mech. Engrg., Vol. 195(44–47), (2006), pp. 5995–6010. http://dx.doi.org/10.1016/j.cma.2005.10.007 Zbl1124.76041
  11. [11] P. Kunkel and V. Mehrmann: Differential-Algebraic Equations, EMS Publishing House, Zürich, 2006. Zbl1095.34004
  12. [12] J. Lang: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems, Lecture Notes in Computational Science and Engineering, Vol. 16, Springer-Verlag, Berlin, 2001. Zbl0963.65102
  13. [13] L. Landau and E. Lifschitz: Fluid mechanics, Addison-Wesley, 1953. 
  14. [14] P. Lesaint: Finite element methods for symmetric hyperbolic systems, Numer. Math., Vol. 21, (1973), pp. 244–255. http://dx.doi.org/10.1007/BF01436628 Zbl0283.65061
  15. [15] A. Majda: Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York, 1984. Zbl0537.76001
  16. [16] A. Majda: The interaction of nonlinear analysis and modern applied mathematics, In: Proceedings of the International Congress of Mathematicians, Tokyo, Math. Soc. Japan., (1990), pp. 175–191. Zbl1153.76300
  17. [17] W.S. Martinson and P.I. Barton: A Differentiation Index for Partial Differential Equations, SIAM J. Sci. Comput., Vol. 21(6), (2000), pp. 2295–2315. http://dx.doi.org/10.1137/S1064827598332229 Zbl0956.35026
  18. [18] M. Marion and R. Temam: Navier-Stokes equations: theory and approximation, In: P.G. Ciarlet and J.L. Lions (Eds.): Handbook of numerical analysis, Handb. Numer. Anal., Vol. 6, North-Holland, Amsterdam, 1998, pp. 503–688. Zbl0921.76040
  19. [19] J. Rang and L. Angermann: The perturbation index of linearized problems in porous media, Mathematik-Bericht Nr. 2004/1, Institut für Mathematik, TU Clausthal, Clausthal, 2004. 
  20. [20] J. Rang and L. Angermann: “The perturbation index of linear partial differential algebraic equations”, Appl. Numer. Math., Vol. 53(2–4), (2005), pp. 437–456. http://dx.doi.org/10.1016/j.apnum.2004.08.017 Zbl1073.35053
  21. [21] J. Rang and L. Angermann: “New Rosenbrock W-methods of order 3 for PDAEs of index 1”, BIT, Vol. 45(4), (2005), pp. 761–787. http://dx.doi.org/10.1007/s10543-005-0035-y Zbl1093.65097
  22. [22] J. Rang and L. Angermann: Remarks on the differentiation index and on the perturbation index of non-linear differential algebraic equations, Mathematik-Bericht Nr. 2005/3, Institut für Mathematik, TU Clausthal, Clausthal, 2005. 
  23. [23] J. Rang: Stability estimates and numerical methods for degenerate parabolic differential equations, PhD thesis, Technische Universität Clausthal, Clausthal, 2004. 
  24. [24] R.E. Showalter: Monotone operators in Banach spaces and nonlinear partial differential equations, AMS, Providence, 1997. Zbl0870.35004
  25. [25] C. Tischendorf: Coupled systems of differential algebraic and partial differential equations in circuit and device simulation Habilitation Thesis, Humboldt University at Berlin, 2003. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.