An illustrated theory of hyperbolic virtual polytopes

Marina Knyazeva; Gaiane Panina

Open Mathematics (2008)

  • Volume: 6, Issue: 2, page 204-217
  • ISSN: 2391-5455

Abstract

top
The paper gives an illustrated introduction to the theory of hyperbolic virtual polytopes and related counterexamples to A.D. Alexandrov’s conjecture.

How to cite

top

Marina Knyazeva, and Gaiane Panina. "An illustrated theory of hyperbolic virtual polytopes." Open Mathematics 6.2 (2008): 204-217. <http://eudml.org/doc/269782>.

@article{MarinaKnyazeva2008,
abstract = {The paper gives an illustrated introduction to the theory of hyperbolic virtual polytopes and related counterexamples to A.D. Alexandrov’s conjecture.},
author = {Marina Knyazeva, Gaiane Panina},
journal = {Open Mathematics},
keywords = {virtual polytope; hyperbolic virtual polytope; saddle surface; A.D. Alexandrov’s conjecture; A.D. Alexandrov's conjecture},
language = {eng},
number = {2},
pages = {204-217},
title = {An illustrated theory of hyperbolic virtual polytopes},
url = {http://eudml.org/doc/269782},
volume = {6},
year = {2008},
}

TY - JOUR
AU - Marina Knyazeva
AU - Gaiane Panina
TI - An illustrated theory of hyperbolic virtual polytopes
JO - Open Mathematics
PY - 2008
VL - 6
IS - 2
SP - 204
EP - 217
AB - The paper gives an illustrated introduction to the theory of hyperbolic virtual polytopes and related counterexamples to A.D. Alexandrov’s conjecture.
LA - eng
KW - virtual polytope; hyperbolic virtual polytope; saddle surface; A.D. Alexandrov’s conjecture; A.D. Alexandrov's conjecture
UR - http://eudml.org/doc/269782
ER -

References

top
  1. [1] Alexandrov A.D., Sur les théoremes d’unicité pour les surfaces fermées, C. R. (Dokl.) Acad. Sci. URSS, 1939, 22, 99–102 Zbl65.0828.03
  2. [2] Martinez-Maure Y., A counterexample to a conjectured characterization of the sphere, C. R. Acad. Sci. Paris Sér. I Math., 2001, 332, 41–44 (in French) Zbl1008.53002
  3. [3] Martinez-Maure Y., Hedgehog theory and polytopes, C. R. Math. Acad. Sci. Paris, 2003, 336, 241–244 (in French) Zbl1053.52009
  4. [4] Panina G., Isotopy problems for saddle surfaces, preprint available at ESI preprints http://www.esi.ac.at/Preprint-shadows/esi1796.html 
  5. [5] Panina G., New counterexamples to A.D. Alexandrov’s hypothesis, Adv. Geom., 2005, 5, 301–317 http://dx.doi.org/10.1515/advg.2005.5.2.301 Zbl1077.52003
  6. [6] Panina G., On hyperbolic virtual polytopes and hyperbolic fans, Cent. Eur. J. Math., 2006, 4, 270–293 http://dx.doi.org/10.2478/s11533-006-0006-9 Zbl1107.52002
  7. [7] Pukhlikov A.V., Khovanskiĭ A.G., Finitely additive measures of virtual polyhedra, St. Petersburg Math. J., 1993, 4, 337–356 

NotesEmbed ?

top

You must be logged in to post comments.