Exponential coordinates and regularity of groupoid heat kernels
Open Mathematics (2014)
- Volume: 12, Issue: 2, page 284-297
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topBing So. "Exponential coordinates and regularity of groupoid heat kernels." Open Mathematics 12.2 (2014): 284-297. <http://eudml.org/doc/269786>.
@article{BingSo2014,
abstract = {We prove that on an asymptotically Euclidean boundary groupoid, the heat kernel of the Laplacian is a smooth groupoid pseudo-differential operator.},
author = {Bing So},
journal = {Open Mathematics},
keywords = {Groupoid; Heat kernel; Singular differential operators; singular differential operators; pseudo-differential operators on differential groupoids; groupoid heat kernels},
language = {eng},
number = {2},
pages = {284-297},
title = {Exponential coordinates and regularity of groupoid heat kernels},
url = {http://eudml.org/doc/269786},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Bing So
TI - Exponential coordinates and regularity of groupoid heat kernels
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 284
EP - 297
AB - We prove that on an asymptotically Euclidean boundary groupoid, the heat kernel of the Laplacian is a smooth groupoid pseudo-differential operator.
LA - eng
KW - Groupoid; Heat kernel; Singular differential operators; singular differential operators; pseudo-differential operators on differential groupoids; groupoid heat kernels
UR - http://eudml.org/doc/269786
ER -
References
top- [1] Albin P., A renormalized index theorem for some complete asymptotically regular metrics: the Gauss-Bonnet theorem, Adv. Math., 2007, 213(1), 1–52 http://dx.doi.org/10.1016/j.aim.2006.11.009 Zbl1195.58008
- [2] Berline N., Getzler E., Vergne M., Heat Kernels and Dirac Operators, Grundlehren Math. Wiss., 298, Springer, Berlin, 1992 http://dx.doi.org/10.1007/978-3-642-58088-8 Zbl0744.58001
- [3] Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. Math., 2002, 170(1), 119–179 http://dx.doi.org/10.1006/aima.2001.2070 Zbl1007.22007
- [4] Heitsch J.L., Bismut superconnections and the Chern character for Dirac operators on foliated manifolds, K-Theory, 1995, 9(6), 507–528 http://dx.doi.org/10.1007/BF00998126 Zbl0843.58117
- [5] Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Note Ser., 124, Cambridge University Press, Cambridge, 1987 http://dx.doi.org/10.1017/CBO9780511661839 Zbl0683.53029
- [6] Melrose R.B., The Atiyah-Patodi-Singer Index Theorem, Res. Notes in Math., 4, A K Peters, Wellesley, 1993 Zbl0796.58050
- [7] Nistor V., Groupoids and integration of Lie algebroids, J. Math. Soc. Japan, 2000, 52(4), 847–868 http://dx.doi.org/10.2969/jmsj/05240847 Zbl0965.58023
- [8] Nistor V., Weinstein A., Xu P., Pseudodifferential operators on differential groupoids, Pacific J. Math., 1999, 189(1), 117–152 http://dx.doi.org/10.2140/pjm.1999.189.117 Zbl0940.58014
- [9] So B.K., Pseudo-Differential Operators, Heat Calculus and Index Theory of Groupoids Satisfying the Lauter-Nistor Condition, PhD thesis, University of Warwick, Warwick, 2010
- [10] So B.K., On the full calculus of pseudo-differential operators on boundary groupoids with polynomial growth, Adv. Math., 2013, 237, 1–32 http://dx.doi.org/10.1016/j.aim.2013.01.001 Zbl1269.58007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.