On the frame of the unit ball of Banach spaces
Open Mathematics (2014)
- Volume: 12, Issue: 11, page 1700-1713
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topRyotaro Tanaka. "On the frame of the unit ball of Banach spaces." Open Mathematics 12.11 (2014): 1700-1713. <http://eudml.org/doc/269791>.
@article{RyotaroTanaka2014,
abstract = {The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c 0 and ℓ p are determined.},
author = {Ryotaro Tanaka},
journal = {Open Mathematics},
keywords = {k-extreme point; Exposed face; Frame; -extreme point; exposed face; frame of the unit ball of Banach spaces},
language = {eng},
number = {11},
pages = {1700-1713},
title = {On the frame of the unit ball of Banach spaces},
url = {http://eudml.org/doc/269791},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Ryotaro Tanaka
TI - On the frame of the unit ball of Banach spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 11
SP - 1700
EP - 1713
AB - The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c 0 and ℓ p are determined.
LA - eng
KW - k-extreme point; Exposed face; Frame; -extreme point; exposed face; frame of the unit ball of Banach spaces
UR - http://eudml.org/doc/269791
ER -
References
top- [1] Aizpuru A., García-Pacheco F. J., Some questions about rotundity and renormings in Banach spaces, J. Aust. Math. Soc., 2005, 79(1), 131–140 http://dx.doi.org/10.1017/S144678870000937X Zbl1089.46011
- [2] Aizpuru A., García-Pacheco F. J., A short note about exposed points in real Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., 2008, 28(4), 797–800 http://dx.doi.org/10.1016/S0252-9602(08)60080-6 Zbl1199.46037
- [3] Asplund E., A k-extreme point is the limit of k-exposed points, Israel J. Math., 1963, 1, 161–162 http://dx.doi.org/10.1007/BF02759703 Zbl0125.11201
- [4] Birkhoff G., Orthogonality in linear metric spaces, Duke Math. J., 1935, 1(2), 169–172 http://dx.doi.org/10.1215/S0012-7094-35-00115-6 Zbl0012.30604
- [5] Day M.M., Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc., 1947, 62, 315–319 http://dx.doi.org/10.1090/S0002-9947-1947-0022686-9 Zbl0034.25301
- [6] Day M.M., Some characterizations of inner-product spaces, Trans. Amer. Math. Soc., 1947, 62, 320–337 http://dx.doi.org/10.1090/S0002-9947-1947-0022312-9 Zbl0034.21703
- [7] García-Pacheco F. J., On exposed faces and smoothness, Bull. Braz. Math. Soc. (N.S.), 2009, 40(2), 237–245 http://dx.doi.org/10.1007/s00574-009-0011-2 Zbl1185.46006
- [8] García-Pacheco F. J., On minimal exposed faces, Ark. Mat., 2011, 49(2), 325–333 http://dx.doi.org/10.1007/s11512-010-0123-3 Zbl1267.46019
- [9] James R.C., Orthogonality in normed linear spaces, Duke Math. J., 1945, 12, 291–302 http://dx.doi.org/10.1215/S0012-7094-45-01223-3 Zbl0060.26202
- [10] James R.C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 1947, 61, 265–292 http://dx.doi.org/10.1090/S0002-9947-1947-0021241-4 Zbl0037.08001
- [11] James R.C., Inner products in normed linear spaces, Bull. Amer. Math. Soc., 1947, 53, 559–566 http://dx.doi.org/10.1090/S0002-9904-1947-08831-5 Zbl0041.43701
- [12] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 Zbl1121.46019
- [13] Liu Z., Zhuang Y.D., K-rotund complex normed linear spaces, J. Math. Anal. Appl., 1990, 146(2), 540–545 http://dx.doi.org/10.1016/0022-247X(90)90323-8 Zbl0764.46013
- [14] Megginson R.E., An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998 http://dx.doi.org/10.1007/978-1-4612-0603-3 Zbl0910.46008
- [15] Mizuguchi H., Saito K.-S., Tanaka R., On the calculation of the Dunkl-Williams constant of normed linear spaces, Cent. Eur. J. Math., 2013, 11(7), 1212–1227. http://dx.doi.org/10.2478/s11533-013-0238-4 Zbl1283.46013
- [16] Singer I., On the set of the best approximations of an element in a normed linear space, Rev. Math. Pures. Appl., 1960, 5, 383–402 Zbl0122.34801
- [17] Singer I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970 http://dx.doi.org/10.1007/978-3-662-41583-2
- [18] Zhuang Y.D., On k-rotund complex normed linear spaces, J. Math. Anal. Appl., 1993, 174(1), 218–230 http://dx.doi.org/10.1006/jmaa.1993.1112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.