The arithmetic of distributions in free probability theory
Gennadii Chistyakov; Friedrich Götze
Open Mathematics (2011)
- Volume: 9, Issue: 5, page 997-1050
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Akhiezer N.I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York, 1965 Zbl0135.33803
- [2] Akhiezer N.I., Glazman I.M., Theory of Linear Operators in Hilbert Space. II, Frederick Ungar, New York, 1963
- [3] Belinschi S.T., The atoms of the free multiplicative convolution of two probability distributions, Integral Equations Operator Theory, 2003, 46(4), 377–386 http://dx.doi.org/10.1007/s00020-002-1145-4 Zbl1028.46095
- [4] Belinschi S.T., Complex Analysis Methods in Noncommutative Probability, Ph.D. thesis, Indiana University, 2005, available at http://arxiv.org/abs/math/0602343v1
- [5] Belinschi S.T., The Lebesgue decomposition of the free additive convolution of two probability distributions, Probab. Theory Related Fields, 2008, 142(1–2), 125–150 http://dx.doi.org/10.1007/s00440-007-0100-3 Zbl05351824
- [6] Belinschi S.T., Bercovici H., Atoms and regularity for measures in a partially defined free convolution semigroup, Math. Z., 2004, 248(4), 665–674 http://dx.doi.org/10.1007/s00209-004-0671-y Zbl1065.46045
- [7] Belinschi S.T., Bercovici H., Partially defined semigroups relative to multiplicative free convolution, Int. Math. Res. Not., 2005, 2, 65–101 http://dx.doi.org/10.1155/IMRN.2005.65 Zbl1092.46046
- [8] Belinschi S.T., Bercovici H., A new approach to subordination results in free probability, J. Anal. Math., 2007, 101, 357–365 http://dx.doi.org/10.1007/s11854-007-0013-1 Zbl1142.46030
- [9] Belinschi S.T., Bercovici H., Hinčin’s theorem for multiplicative free convolutions, Canad. Math. Bull., 2008, 51(1), 26–31 http://dx.doi.org/10.4153/CMB-2008-004-3 Zbl1144.46056
- [10] Benaych-Georges F., Failure of the Raikov theorem for free random variables, In: Séminaire de Probabilités XXXVIII, Lecture Notes in Math., 1857, Springer, Berlin, 2005, 313–319 Zbl1076.46050
- [11] Bercovici H., Pata V., Stable laws and domains of attraction in free probability theory, Ann. of Math., 1999, 149(3), 1023–1060 http://dx.doi.org/10.2307/121080 Zbl0945.46046
- [12] Bercovici H., Pata V., A free analogue of Hinčins characterization of infinite divisibility, Proc. Amer. Math. Soc, 2000, 128(4), 1011–1015 http://dx.doi.org/10.1090/S0002-9939-99-05087-X Zbl0968.46054
- [13] Bercovici H., Voiculescu D., Lévy-Hinčin type theorems for multiplicative and additive free convolution, Pacific J. Math., 1992, 153(2), 217–248 Zbl0769.60013
- [14] Bercovici H., Voiculescu D., Free convolution of measures with unbounded support, Indiana Univ. Math. J., 1993, 42(3), 733–773 http://dx.doi.org/10.1512/iumj.1993.42.42033 Zbl0806.46070
- [15] Bercovici H., Voiculescu D., Superconvergence to the central limit and failure of the Cramér theorem for free random variables, Probab. Theory Related Fields, 1995, 103(2), 215–222 http://dx.doi.org/10.1007/BF01204215 Zbl0831.60036
- [16] Bercovici H., Voiculescu D., Regularity questions for free convolution, In: Nonselfadjoint Operator Algebras, Operator Theory, and Related Topics, Oper. Theory Adv. Appl., 104, Birkhäuser, Basel, 1998, 37–47 Zbl0927.46048
- [17] Bercovici H., Wang J.-Ch., On freely indecomposable measures, Indiana Univ. Math. J., 2008, 57(6), 2601–2610 http://dx.doi.org/10.1512/iumj.2008.57.3662 Zbl1171.46043
- [18] Biane Ph., On the free convolution with a semi-circular distribution, Indiana Univ. Math. J., 1997, 46(3), 705–718 http://dx.doi.org/10.1512/iumj.1997.46.1467 Zbl0904.46045
- [19] Biane Ph., Processes with free increments, Math. Z., 1998, 227(1), 143–174 http://dx.doi.org/10.1007/PL00004363 Zbl0902.60060
- [20] Chistyakov G.P., Götze F., The arithmetic of distributions in free probability theory, Bielefed University, 2005, #05-001, preprint available at http://www.mathematik.uni-bielefeld.de/fgweb/Preprints/fg05001.pdf
- [21] Chistyakov G.P., Götze F., The arithmetic of distributions in free probability theory, preprint available at http://arxiv.org/abs/math/0508245v1 (version 2005), http://arxiv.org/abs/math/0508245v2 (version 2010)
- [22] Chistyakov G.P., Götze F., Limit theorems in free probability theory. I, 2006, preprint available at http://arxiv.org/abs/math/0602219
- [23] Chistyakov G.P., Götze F., Limit theorems in free probability theory. I, Ann. Probab., 2008, 36(1), 54–90 http://dx.doi.org/10.1214/009117907000000051 Zbl1157.46037
- [24] Davidson R., Arithmetic and other properties of certain Delphic semigroups. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1968, 10(2), 120–145 http://dx.doi.org/10.1007/BF00531845 Zbl0164.46502
- [25] Davidson R., Arithmetic and other properties of certain Delphic semigroups. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1968, 10(2), 146–172 http://dx.doi.org/10.1007/BF00531846 Zbl0164.46502
- [26] Davidson R., More Delphic theory and practice, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1969, 13(3–4), 191–203 http://dx.doi.org/10.1007/BF00539200
- [27] Goluzin G.M., Geometric Theory of Functions of a Complex Variable, Transl. Math. Monogr., 26, American Mathe-matical Society, Providence, 1969 Zbl0183.07502
- [28] Hiai F., Petz D., The Semicircle Law, Free Random Variables and Entropy, Math. Surveys Monogr., 77, American Mathematical Society, Providence, 2000 Zbl0955.46037
- [29] Kendall DG., Delphic semigroups, Bull. Amer. Math. Soc, 1967, 73(1), 120–121 http://dx.doi.org/10.1090/S0002-9904-1967-11673-2 Zbl0178.19804
- [30] Kendall D.G., Delphic semi-groups, infinitely divisible regenerative phenomena, and the arithmetic of p-functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1968, 9(3), 163–195 http://dx.doi.org/10.1007/BF00535637 Zbl0159.46902
- [31] Khintchine A., Contribution à larithmétique des lois de distribution, Bull. Univ. État Moscou, Sér. Int., Sect. A, Math. et Mécan., 1937, 1(1), 6–17
- [32] Kreĭn M.G., Nudelman A.A., The Markov Moment Problem and Extremal Problems, Transl. Math. Monogr., 50, American Mathematical Society, Providence, 1977
- [33] Linnik Ju.V, Ostrovs’kiĭ Ĭ.V., Decomposition of Random Variables and Vectors, Transl. Math. Monogr., 48, American Mathematical Society, Providence, 1977
- [34] Livshic L.Z., Ostrovskii I.V., Chistyakov G.P., The arithmetic of probability laws, In: Probability Theory, Mathematical Statistic, Theoretical Cybernetics, 12, Akad. Nauk SSSR Vsesojuz. Inst. Nauch. i Tehn. Informacii, Moscow, 1975, 5–42 (in Russian)
- [35] Loève M., Probability Theory, 3rd ed., Van Nostrand, Princeton-Toronto-London, 1963
- [36] Maassen H., Addition of freely independent random variables, J. Funct. Anal., 1992, 106(2), 409–438 http://dx.doi.org/10.1016/0022-1236(92)90055-N
- [37] Markushevich A.I., Theory of Functions of a Complex Variable. II&III, Prentice-Hall, Englewood Cliffs, 1965&1967 Zbl0142.32602
- [38] Nevanlinna R., Paatero V, Introduction to Complex Analysis, Addison-Wesley, Reading-London-Don Mills, 1969 Zbl0169.09001
- [39] Nica A., Speicher R., On the multiplication of free N-tuples of noncommutative random variables, Amer. J. Math., 1996, 118(4), 799–837 http://dx.doi.org/10.1353/ajm.1996.0034 Zbl0856.46035
- [40] Ostrovskiĭ I.V., The arithmetic of probability distributions, J. Multivariate Anal., 1977, 7(4), 475–490 http://dx.doi.org/10.1016/0047-259X(77)90061-6
- [41] Ostrovskiĭ I.V., The arithmetic of probability distributions, Teor. Veroyatn. Primen., 1986, 31(1), 3–30
- [42] Pastur L, Vasilchuk V, On the law of addition of random matrices, Comm. Math. Phys., 2000, 214(2), 249–286 http://dx.doi.org/10.1007/s002200000264 Zbl1039.82020
- [43] Speicher R., Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Mem. Amer. Math. Soc., 627, American Mathematical Society, Providence, 1998 Zbl0935.46056
- [44] Speicher R., Woroudi R., Boolean convolution, In: Free Probability Theory, Waterloo, 1995, Fields Inst. Commun., 12, American Mathematical Society, Providence, 1997, 267–279
- [45] Vasilchuk V., On the law of multiplication of random matrices, Math. Phys. Anal. Geom., 2001, 4(1), 1–36 http://dx.doi.org/10.1023/A:1011807424118
- [46] Voiculescu D., Addition of certain noncommuting random variables, J. Funct. Anal., 1986, 66(3), 323–346 http://dx.doi.org/10.1016/0022-1236(86)90062-5
- [47] Voiculescu D., Multiplication of certain noncommuting random variables, J. Operator Theory, 1987, 18(2), 223–235 Zbl0662.46069
- [48] Voiculescu D., The analogues of entropy and of Fisher’s information measure in free probability theory. I, Comm. Math. Phys., 1993, 155(1), 71–92 http://dx.doi.org/10.1007/BF02100050 Zbl0781.60006
- [49] Voiculescu D., The coalgebra of the free difference quotient and free probability, Int. Math. Res. Not., 2000, 2, 79–106 http://dx.doi.org/10.1155/S1073792800000064 Zbl0952.46038
- [50] Voiculescu D.V., Analytic subordination consequences of free Markovianity, Indiana Univ. Math. J., 2002, 51(5), 1161–1166 http://dx.doi.org/10.1512/iumj.2002.51.2252 Zbl1040.46044
- [51] Voiculescu D.V., Dykema K.J., Nica A., Free Random Variables, CRM Monogr. Ser., 1, American Mathematical Society, Providence, 1992 Zbl0795.46049
- [52] Williams J.D., A Khintchine decomposition in free probability, preprint available at http://arxiv.org/abs/1009.4955 Zbl1260.60185