The arithmetic of distributions in free probability theory

Gennadii Chistyakov; Friedrich Götze

Open Mathematics (2011)

  • Volume: 9, Issue: 5, page 997-1050
  • ISSN: 2391-5455

Abstract

top
We give an analytical approach to the definition of additive and multiplicative free convolutions which is based on the theory of Nevanlinna and Schur functions. We consider the set of probability distributions as a semigroup M equipped with the operation of free convolution and prove a Khintchine type theorem for the factorization of elements of this semigroup. An element of M contains either indecomposable (“prime”) factors or it belongs to a class, say I 0, of distributions without indecomposable factors. In contrast to the classical convolution semigroup, in the free additive and multiplicative convolution semigroups the class I 0 consists of units (i.e. Dirac measures) only. Furthermore we show that the set of indecomposable elements is dense in M.

How to cite

top

Gennadii Chistyakov, and Friedrich Götze. "The arithmetic of distributions in free probability theory." Open Mathematics 9.5 (2011): 997-1050. <http://eudml.org/doc/269792>.

@article{GennadiiChistyakov2011,
abstract = {We give an analytical approach to the definition of additive and multiplicative free convolutions which is based on the theory of Nevanlinna and Schur functions. We consider the set of probability distributions as a semigroup M equipped with the operation of free convolution and prove a Khintchine type theorem for the factorization of elements of this semigroup. An element of M contains either indecomposable (“prime”) factors or it belongs to a class, say I 0, of distributions without indecomposable factors. In contrast to the classical convolution semigroup, in the free additive and multiplicative convolution semigroups the class I 0 consists of units (i.e. Dirac measures) only. Furthermore we show that the set of indecomposable elements is dense in M.},
author = {Gennadii Chistyakov, Friedrich Götze},
journal = {Open Mathematics},
keywords = {Free random variables; Cauchy transforms; Free convolutions; Delphic semigroups; Khintchine’s theorems; free random variables; free convolutions; Khintchine's theorems},
language = {eng},
number = {5},
pages = {997-1050},
title = {The arithmetic of distributions in free probability theory},
url = {http://eudml.org/doc/269792},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Gennadii Chistyakov
AU - Friedrich Götze
TI - The arithmetic of distributions in free probability theory
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 997
EP - 1050
AB - We give an analytical approach to the definition of additive and multiplicative free convolutions which is based on the theory of Nevanlinna and Schur functions. We consider the set of probability distributions as a semigroup M equipped with the operation of free convolution and prove a Khintchine type theorem for the factorization of elements of this semigroup. An element of M contains either indecomposable (“prime”) factors or it belongs to a class, say I 0, of distributions without indecomposable factors. In contrast to the classical convolution semigroup, in the free additive and multiplicative convolution semigroups the class I 0 consists of units (i.e. Dirac measures) only. Furthermore we show that the set of indecomposable elements is dense in M.
LA - eng
KW - Free random variables; Cauchy transforms; Free convolutions; Delphic semigroups; Khintchine’s theorems; free random variables; free convolutions; Khintchine's theorems
UR - http://eudml.org/doc/269792
ER -

References

top
  1. [1] Akhiezer N.I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York, 1965 Zbl0135.33803
  2. [2] Akhiezer N.I., Glazman I.M., Theory of Linear Operators in Hilbert Space. II, Frederick Ungar, New York, 1963 
  3. [3] Belinschi S.T., The atoms of the free multiplicative convolution of two probability distributions, Integral Equations Operator Theory, 2003, 46(4), 377–386 http://dx.doi.org/10.1007/s00020-002-1145-4 Zbl1028.46095
  4. [4] Belinschi S.T., Complex Analysis Methods in Noncommutative Probability, Ph.D. thesis, Indiana University, 2005, available at http://arxiv.org/abs/math/0602343v1 
  5. [5] Belinschi S.T., The Lebesgue decomposition of the free additive convolution of two probability distributions, Probab. Theory Related Fields, 2008, 142(1–2), 125–150 http://dx.doi.org/10.1007/s00440-007-0100-3 Zbl05351824
  6. [6] Belinschi S.T., Bercovici H., Atoms and regularity for measures in a partially defined free convolution semigroup, Math. Z., 2004, 248(4), 665–674 http://dx.doi.org/10.1007/s00209-004-0671-y Zbl1065.46045
  7. [7] Belinschi S.T., Bercovici H., Partially defined semigroups relative to multiplicative free convolution, Int. Math. Res. Not., 2005, 2, 65–101 http://dx.doi.org/10.1155/IMRN.2005.65 Zbl1092.46046
  8. [8] Belinschi S.T., Bercovici H., A new approach to subordination results in free probability, J. Anal. Math., 2007, 101, 357–365 http://dx.doi.org/10.1007/s11854-007-0013-1 Zbl1142.46030
  9. [9] Belinschi S.T., Bercovici H., Hinčin’s theorem for multiplicative free convolutions, Canad. Math. Bull., 2008, 51(1), 26–31 http://dx.doi.org/10.4153/CMB-2008-004-3 Zbl1144.46056
  10. [10] Benaych-Georges F., Failure of the Raikov theorem for free random variables, In: Séminaire de Probabilités XXXVIII, Lecture Notes in Math., 1857, Springer, Berlin, 2005, 313–319 Zbl1076.46050
  11. [11] Bercovici H., Pata V., Stable laws and domains of attraction in free probability theory, Ann. of Math., 1999, 149(3), 1023–1060 http://dx.doi.org/10.2307/121080 Zbl0945.46046
  12. [12] Bercovici H., Pata V., A free analogue of Hinčins characterization of infinite divisibility, Proc. Amer. Math. Soc, 2000, 128(4), 1011–1015 http://dx.doi.org/10.1090/S0002-9939-99-05087-X Zbl0968.46054
  13. [13] Bercovici H., Voiculescu D., Lévy-Hinčin type theorems for multiplicative and additive free convolution, Pacific J. Math., 1992, 153(2), 217–248 Zbl0769.60013
  14. [14] Bercovici H., Voiculescu D., Free convolution of measures with unbounded support, Indiana Univ. Math. J., 1993, 42(3), 733–773 http://dx.doi.org/10.1512/iumj.1993.42.42033 Zbl0806.46070
  15. [15] Bercovici H., Voiculescu D., Superconvergence to the central limit and failure of the Cramér theorem for free random variables, Probab. Theory Related Fields, 1995, 103(2), 215–222 http://dx.doi.org/10.1007/BF01204215 Zbl0831.60036
  16. [16] Bercovici H., Voiculescu D., Regularity questions for free convolution, In: Nonselfadjoint Operator Algebras, Operator Theory, and Related Topics, Oper. Theory Adv. Appl., 104, Birkhäuser, Basel, 1998, 37–47 Zbl0927.46048
  17. [17] Bercovici H., Wang J.-Ch., On freely indecomposable measures, Indiana Univ. Math. J., 2008, 57(6), 2601–2610 http://dx.doi.org/10.1512/iumj.2008.57.3662 Zbl1171.46043
  18. [18] Biane Ph., On the free convolution with a semi-circular distribution, Indiana Univ. Math. J., 1997, 46(3), 705–718 http://dx.doi.org/10.1512/iumj.1997.46.1467 Zbl0904.46045
  19. [19] Biane Ph., Processes with free increments, Math. Z., 1998, 227(1), 143–174 http://dx.doi.org/10.1007/PL00004363 Zbl0902.60060
  20. [20] Chistyakov G.P., Götze F., The arithmetic of distributions in free probability theory, Bielefed University, 2005, #05-001, preprint available at http://www.mathematik.uni-bielefeld.de/fgweb/Preprints/fg05001.pdf 
  21. [21] Chistyakov G.P., Götze F., The arithmetic of distributions in free probability theory, preprint available at http://arxiv.org/abs/math/0508245v1 (version 2005), http://arxiv.org/abs/math/0508245v2 (version 2010) 
  22. [22] Chistyakov G.P., Götze F., Limit theorems in free probability theory. I, 2006, preprint available at http://arxiv.org/abs/math/0602219 
  23. [23] Chistyakov G.P., Götze F., Limit theorems in free probability theory. I, Ann. Probab., 2008, 36(1), 54–90 http://dx.doi.org/10.1214/009117907000000051 Zbl1157.46037
  24. [24] Davidson R., Arithmetic and other properties of certain Delphic semigroups. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1968, 10(2), 120–145 http://dx.doi.org/10.1007/BF00531845 Zbl0164.46502
  25. [25] Davidson R., Arithmetic and other properties of certain Delphic semigroups. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1968, 10(2), 146–172 http://dx.doi.org/10.1007/BF00531846 Zbl0164.46502
  26. [26] Davidson R., More Delphic theory and practice, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1969, 13(3–4), 191–203 http://dx.doi.org/10.1007/BF00539200 
  27. [27] Goluzin G.M., Geometric Theory of Functions of a Complex Variable, Transl. Math. Monogr., 26, American Mathe-matical Society, Providence, 1969 Zbl0183.07502
  28. [28] Hiai F., Petz D., The Semicircle Law, Free Random Variables and Entropy, Math. Surveys Monogr., 77, American Mathematical Society, Providence, 2000 Zbl0955.46037
  29. [29] Kendall DG., Delphic semigroups, Bull. Amer. Math. Soc, 1967, 73(1), 120–121 http://dx.doi.org/10.1090/S0002-9904-1967-11673-2 Zbl0178.19804
  30. [30] Kendall D.G., Delphic semi-groups, infinitely divisible regenerative phenomena, and the arithmetic of p-functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1968, 9(3), 163–195 http://dx.doi.org/10.1007/BF00535637 Zbl0159.46902
  31. [31] Khintchine A., Contribution à larithmétique des lois de distribution, Bull. Univ. État Moscou, Sér. Int., Sect. A, Math. et Mécan., 1937, 1(1), 6–17 
  32. [32] Kreĭn M.G., Nudelman A.A., The Markov Moment Problem and Extremal Problems, Transl. Math. Monogr., 50, American Mathematical Society, Providence, 1977 
  33. [33] Linnik Ju.V, Ostrovs’kiĭ Ĭ.V., Decomposition of Random Variables and Vectors, Transl. Math. Monogr., 48, American Mathematical Society, Providence, 1977 
  34. [34] Livshic L.Z., Ostrovskii I.V., Chistyakov G.P., The arithmetic of probability laws, In: Probability Theory, Mathematical Statistic, Theoretical Cybernetics, 12, Akad. Nauk SSSR Vsesojuz. Inst. Nauch. i Tehn. Informacii, Moscow, 1975, 5–42 (in Russian) 
  35. [35] Loève M., Probability Theory, 3rd ed., Van Nostrand, Princeton-Toronto-London, 1963 
  36. [36] Maassen H., Addition of freely independent random variables, J. Funct. Anal., 1992, 106(2), 409–438 http://dx.doi.org/10.1016/0022-1236(92)90055-N 
  37. [37] Markushevich A.I., Theory of Functions of a Complex Variable. II&III, Prentice-Hall, Englewood Cliffs, 1965&1967 Zbl0142.32602
  38. [38] Nevanlinna R., Paatero V, Introduction to Complex Analysis, Addison-Wesley, Reading-London-Don Mills, 1969 Zbl0169.09001
  39. [39] Nica A., Speicher R., On the multiplication of free N-tuples of noncommutative random variables, Amer. J. Math., 1996, 118(4), 799–837 http://dx.doi.org/10.1353/ajm.1996.0034 Zbl0856.46035
  40. [40] Ostrovskiĭ I.V., The arithmetic of probability distributions, J. Multivariate Anal., 1977, 7(4), 475–490 http://dx.doi.org/10.1016/0047-259X(77)90061-6 
  41. [41] Ostrovskiĭ I.V., The arithmetic of probability distributions, Teor. Veroyatn. Primen., 1986, 31(1), 3–30 
  42. [42] Pastur L, Vasilchuk V, On the law of addition of random matrices, Comm. Math. Phys., 2000, 214(2), 249–286 http://dx.doi.org/10.1007/s002200000264 Zbl1039.82020
  43. [43] Speicher R., Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Mem. Amer. Math. Soc., 627, American Mathematical Society, Providence, 1998 Zbl0935.46056
  44. [44] Speicher R., Woroudi R., Boolean convolution, In: Free Probability Theory, Waterloo, 1995, Fields Inst. Commun., 12, American Mathematical Society, Providence, 1997, 267–279 
  45. [45] Vasilchuk V., On the law of multiplication of random matrices, Math. Phys. Anal. Geom., 2001, 4(1), 1–36 http://dx.doi.org/10.1023/A:1011807424118 
  46. [46] Voiculescu D., Addition of certain noncommuting random variables, J. Funct. Anal., 1986, 66(3), 323–346 http://dx.doi.org/10.1016/0022-1236(86)90062-5 
  47. [47] Voiculescu D., Multiplication of certain noncommuting random variables, J. Operator Theory, 1987, 18(2), 223–235 Zbl0662.46069
  48. [48] Voiculescu D., The analogues of entropy and of Fisher’s information measure in free probability theory. I, Comm. Math. Phys., 1993, 155(1), 71–92 http://dx.doi.org/10.1007/BF02100050 Zbl0781.60006
  49. [49] Voiculescu D., The coalgebra of the free difference quotient and free probability, Int. Math. Res. Not., 2000, 2, 79–106 http://dx.doi.org/10.1155/S1073792800000064 Zbl0952.46038
  50. [50] Voiculescu D.V., Analytic subordination consequences of free Markovianity, Indiana Univ. Math. J., 2002, 51(5), 1161–1166 http://dx.doi.org/10.1512/iumj.2002.51.2252 Zbl1040.46044
  51. [51] Voiculescu D.V., Dykema K.J., Nica A., Free Random Variables, CRM Monogr. Ser., 1, American Mathematical Society, Providence, 1992 Zbl0795.46049
  52. [52] Williams J.D., A Khintchine decomposition in free probability, preprint available at http://arxiv.org/abs/1009.4955 Zbl1260.60185

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.