Hardy-type inequality with double singular kernels
Alexander Fabricant; Nikolai Kutev; Tsviatko Rangelov
Open Mathematics (2013)
- Volume: 11, Issue: 9, page 1689-1697
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAlexander Fabricant, Nikolai Kutev, and Tsviatko Rangelov. "Hardy-type inequality with double singular kernels." Open Mathematics 11.9 (2013): 1689-1697. <http://eudml.org/doc/269802>.
@article{AlexanderFabricant2013,
abstract = {A Hardy-type inequality with singular kernels at zero and on the boundary ∂Ω is proved. Sharpness of the inequality is obtained for Ω= B 1(0).},
author = {Alexander Fabricant, Nikolai Kutev, Tsviatko Rangelov},
journal = {Open Mathematics},
keywords = {Hardy inequality; Sharp estimates; sharp estimates},
language = {eng},
number = {9},
pages = {1689-1697},
title = {Hardy-type inequality with double singular kernels},
url = {http://eudml.org/doc/269802},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Alexander Fabricant
AU - Nikolai Kutev
AU - Tsviatko Rangelov
TI - Hardy-type inequality with double singular kernels
JO - Open Mathematics
PY - 2013
VL - 11
IS - 9
SP - 1689
EP - 1697
AB - A Hardy-type inequality with singular kernels at zero and on the boundary ∂Ω is proved. Sharpness of the inequality is obtained for Ω= B 1(0).
LA - eng
KW - Hardy inequality; Sharp estimates; sharp estimates
UR - http://eudml.org/doc/269802
ER -
References
top- [1] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 2002, 130(2), 489–505 http://dx.doi.org/10.1090/S0002-9939-01-06132-9 Zbl0987.35049
- [2] Alvino A., Volpicelli R., Volzone B., On Hardy inequalities with a remainder term, Ric. Mat., 2010, 59(2), 265–280 http://dx.doi.org/10.1007/s11587-010-0086-5 Zbl1204.35079
- [3] Brezis H., Marcus M., Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1997, 25(1–2), 217–237
- [4] Brezis H., Vázquez J.L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 1997, 10(2), 443–469 Zbl0894.35038
- [5] Filippas S., Tertikas A., Optimizing improved Hardy inequalities, J. Funct. Anal., 2002, 192(1), 186–233 http://dx.doi.org/10.1006/jfan.2001.3900 Zbl1030.26018
- [6] Ghoussoub N., Moradifam A., On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA, 2008, 105(37), 13746–13751 http://dx.doi.org/10.1073/pnas.0803703105 Zbl1205.26033
- [7] Gradsteyn I.S., Ryzhik I.M., Table of Integrals, Series and Products, Academic Press, New York, 1980
- [8] Maz’ja V.G., Sobolev Spaces, Springer Ser. Soviet Math., Springer, Berlin, 1985
- [9] Nazarov A.I., Dirichlet and Neumann problems to critical Emden-Fowler type equations, J. Global. Optim., 2008, 40(1–3), 289–303 http://dx.doi.org/10.1007/s10898-007-9193-6 Zbl1295.49003
- [10] Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy’s inequality, Indiana Univ. Math. J., 2005, 54(4), 1061–1074 http://dx.doi.org/10.1512/iumj.2005.54.2705 Zbl1213.35216
- [11] Shen Y., Chen Z., Sobolev-Hardy space with general weight, J. Math. Anal. Appl., 2006, 320(2), 675–690 http://dx.doi.org/10.1016/j.jmaa.2005.07.044 Zbl1121.46032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.