Color Energy Of A Unitary Cayley Graph
Chandrashekar Adiga; E. Sampathkumar; M.A. Sriraj
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 4, page 707-721
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Adiga, E. Sampathkumar, M.A. Sriraj and A.S. Shrikanth, Color energy of a graph, Proc. Jangjeon Math. Soc. 16 3 (2013) 335-351. Zbl1306.05140
- [2] N. Biggs, Algebraic Graph Theory, Second Edition (Cambridge Mathematical Library, Cambridge University Press, 1993). Zbl0284.05101
- [3] C. Godsil and G. Royle, Algebraic Graph Theory (Graduate Texts in Mathematics, Springer, 207, 2001). Zbl0968.05002
- [4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978) 1-22.
- [5] G.H. Hardy and E. M. Wright, An Introdution to Theory of Numbers, Fifth Ed. (Oxford University Press New York, 1980).
- [6] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) #R45. Zbl1121.05059
- [7] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881-1889. doi:10.1016/j.laa.2009.06.025 Zbl1175.05086
- [8] M. Mollahajiaghaei, The eigenvalues and energy of integral circulant graphs, Trans. Combin. 1 (2012) 47-56. Zbl1272.05115
- [9] E. Sampathkumar and M.A. Sriraj, Vertex labeled/colored graphs, matrices and signed graphs, J. Combin. Inform. System Sci., to appear. Zbl1302.05162
- [10] W. So, Integral circulant graphs, Discrete Math. 306 (2006) 153-158. doi:10.1016/j.disc.2005.11.006 Zbl1084.05045