Positivity of Green's matrix of nonlocal boundary value problems
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 621-638
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDomoshnitsky, Alexander. "Positivity of Green's matrix of nonlocal boundary value problems." Mathematica Bohemica 139.4 (2014): 621-638. <http://eudml.org/doc/269830>.
@article{Domoshnitsky2014,
abstract = {We propose an approach for studying positivity of Green’s operators of a nonlocal boundary value problem for the system of $n$ linear functional differential equations with the boundary conditions $n_\{i\}x_\{i\}-\sum \nolimits _\{j=1\}^\{n\}m_\{ij\}x_\{j\}=\beta _\{i\}$, $i=1,\dots ,n$, where $n_\{i\}$ and $m_\{ij\}$ are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, $n_\{i\}x_\{i\}=x_\{i\}(\omega )$ or $n_\{i\}x_\{i\}=x_\{i\}(0)-x_\{i\}(\omega )$ and $m_\{ij\}x_\{j\}=\int _\{0\}^\{\omega \}k(s)x_\{j\}(s) \{\rm d\} s +\sum \nolimits _\{r=1\}^\{n_\{ij\}\}c_\{ijr\}x_\{j\}(t_\{ijr\})$ can be considered. It is demonstrated that the positivity of Green’s operator of nonlocal problem follows from the positivity of Green’s operator for auxiliary “local” problem which consists of a “close” equation and the local conditions $n_\{i\}x_\{i\}=\alpha _\{i\}$, $i=1,\dots ,n.$},
author = {Domoshnitsky, Alexander},
journal = {Mathematica Bohemica},
keywords = {functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities; functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities},
language = {eng},
number = {4},
pages = {621-638},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positivity of Green's matrix of nonlocal boundary value problems},
url = {http://eudml.org/doc/269830},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Domoshnitsky, Alexander
TI - Positivity of Green's matrix of nonlocal boundary value problems
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 621
EP - 638
AB - We propose an approach for studying positivity of Green’s operators of a nonlocal boundary value problem for the system of $n$ linear functional differential equations with the boundary conditions $n_{i}x_{i}-\sum \nolimits _{j=1}^{n}m_{ij}x_{j}=\beta _{i}$, $i=1,\dots ,n$, where $n_{i}$ and $m_{ij}$ are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, $n_{i}x_{i}=x_{i}(\omega )$ or $n_{i}x_{i}=x_{i}(0)-x_{i}(\omega )$ and $m_{ij}x_{j}=\int _{0}^{\omega }k(s)x_{j}(s) {\rm d} s +\sum \nolimits _{r=1}^{n_{ij}}c_{ijr}x_{j}(t_{ijr})$ can be considered. It is demonstrated that the positivity of Green’s operator of nonlocal problem follows from the positivity of Green’s operator for auxiliary “local” problem which consists of a “close” equation and the local conditions $n_{i}x_{i}=\alpha _{i}$, $i=1,\dots ,n.$
LA - eng
KW - functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities; functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities
UR - http://eudml.org/doc/269830
ER -
References
top- Agarwal, R. P., Berezansky, L., Braverman, E., Domoshnitsky, A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York (2012). (2012) Zbl1253.34002MR2908263
- Agarwal, R. P., Domoshnitsky, A., 10.1017/S0017089509990218, Glasg. Math. J. 52 (2010), 115-136. (2010) Zbl1200.34073MR2587821DOI10.1017/S0017089509990218
- Agarwal, R. P., O'Regan, D., 10.1007/PL00012607, NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 419-440. (2002) Zbl1025.34019MR1941266DOI10.1007/PL00012607
- Azbelev, N., Maksimov, V., Rakhmatullina, L., Introduction to the Theory of Linear Functional Differential Equations, Advanced Series in Mathematical Science and Engineering 3 World Federation Publishers Company, Atlanta (1995). (1995) Zbl0867.34051MR1422013
- Baxley, J. V., 10.1137/0148028, SIAM J. Appl. Math. 48 (1988), 497-505. (1988) Zbl0642.34014MR0941097DOI10.1137/0148028
- Bolojan-Nica, O., Infante, G., Precup, R., 10.1016/j.na.2013.08.019, Nonlinear Anal., Theory Methods Appl., Ser. A 94 (2014), 231-242. (2014) Zbl1288.34019MR3120688DOI10.1016/j.na.2013.08.019
- Cabada, A., An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl. 2011 (2011), Article ID 893753, 18 pages. (2011) Zbl1230.34001MR2719294
- Domoshnitsky, A., Maximum principles and nonoscillation intervals for first order Volterra functional differential equations, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 769-814. (2008) MR2469306
- Feller, W., 10.1090/S0002-9947-1954-0063607-6, Trans. Amer. Math. Soc. 77 (1954), 1-31. (1954) Zbl0059.11601MR0063607DOI10.1090/S0002-9947-1954-0063607-6
- Graef, J. R., Henderson, J., Yang, B., Existence and nonexistence of positive solutions of an -th order nonlocal boundary value problem, Dynamic Systems and Applications 5 G. S. Ladde et al. Atlanta, GA (2008), 86-191. (2008) Zbl1203.34026MR2468138
- Graef, J. R., Yang, B., Positive solutions of a third order nonlocal boundary value problem, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. (2008) Zbl1153.34014MR2375585
- Guidotti, P., Merino, S., Gradual loss of positivity and hidden invariant cones in a scalar heat equation, Differ. Integral Equ. 13 (2000), 1551-1568. (2000) Zbl0983.35013MR1787081
- Hakl, R., Lomtatidze, A., Šremr, J., Some Boundary Value Problems for First Order Scalar Functional Differential Equations, Folia, Mathematica 10 Masaryk University, Brno (2002). (2002) Zbl1048.34004MR1909595
- Infante, G., 10.3934/dcdss.2008.1.99, Discrete Contin. Dyn. Syst., Ser. S 1 (2008), 99-106. (2008) MR2375586DOI10.3934/dcdss.2008.1.99
- Infante, G., Minhós, F. M., Pietramala, P., 10.1016/j.cnsns.2012.05.025, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952-4960. (2012) Zbl1280.34026MR2960289DOI10.1016/j.cnsns.2012.05.025
- Infante, G., Webb, J. R. L., 10.1017/S0013091505000532, Proc. Edinb. Math. Soc. 49 (2006), 637-656. (2006) Zbl1115.34026MR2266153DOI10.1017/S0013091505000532
- Kiguradze, I., Půža, B., 10.1023/A:1022829931363, Czech. Math. J. 47 (1997), 341-373. (1997) Zbl0930.34047MR1452425DOI10.1023/A:1022829931363
- Kiguradze, I., Půža, B., Boundary Value Problems for Systems of Linear Functional Differential Equations, Folia, Mathematica 12 Masaryk University, Brno (2003). (2003) Zbl1161.34300MR2001509
- Krasnosel'skij, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitskij, Ya. B., Stetsenko, V. Ya., Approximate Solution of Operator Equations, Russian Nauka, Moskva (1969). (1969) MR0259635
- O'Regan, D., 10.1016/S0362-546X(01)00255-3, Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 1163-1174. (2001) Zbl1042.34523MR1970727DOI10.1016/S0362-546X(01)00255-3
- Precup, R., Trif, D., 10.1016/j.na.2012.06.008, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 5961-5970. (2012) Zbl1245.34026MR2948310DOI10.1016/j.na.2012.06.008
- Sommerfeld, A., Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssig-keitsbewegungen, German Atti del IV Congresso Internazionale dei Matematici 3 Roma (1909), 116-124. (1909)
- Tchaplygin, S., New Method of Approximate Integration of Differential Equations, GTTI, Moskva (1932), Russion. (1932)
- Webb, J. R. L., Multiple positive solutions of some nonlinear heat flow problems, Discrete Contin. Dyn. Syst., suppl. (2005), 895-903. (2005) Zbl1161.34007MR2192752
- Webb, J. R. L., 10.1016/j.na.2005.02.055, Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 672-685. (2005) Zbl1153.34320MR2188140DOI10.1016/j.na.2005.02.055
- Webb, J. R. L., Infante, G., 10.1112/S0024610706023179, J. Lond. Math. Soc., II. Ser. 74 (2006), 673-693. (2006) Zbl1115.34028MR2286439DOI10.1112/S0024610706023179
- Webb, J. R. L., Infante, G., 10.1007/s00030-007-4067-7, NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 45-67. (2008) Zbl1148.34021MR2408344DOI10.1007/s00030-007-4067-7
- Yang, Z., 10.1016/j.jmaa.2005.09.002, J. Math. Anal. Appl. 321 (2006), 751-765. (2006) Zbl1106.34014MR2241153DOI10.1016/j.jmaa.2005.09.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.