Positivity of Green's matrix of nonlocal boundary value problems

Alexander Domoshnitsky

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 4, page 621-638
  • ISSN: 0862-7959

Abstract

top
We propose an approach for studying positivity of Green’s operators of a nonlocal boundary value problem for the system of n linear functional differential equations with the boundary conditions n i x i - j = 1 n m i j x j = β i , i = 1 , , n , where n i and m i j are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, n i x i = x i ( ω ) or n i x i = x i ( 0 ) - x i ( ω ) and m i j x j = 0 ω k ( s ) x j ( s ) d s + r = 1 n i j c i j r x j ( t i j r ) can be considered. It is demonstrated that the positivity of Green’s operator of nonlocal problem follows from the positivity of Green’s operator for auxiliary “local” problem which consists of a “close” equation and the local conditions n i x i = α i , i = 1 , , n .

How to cite

top

Domoshnitsky, Alexander. "Positivity of Green's matrix of nonlocal boundary value problems." Mathematica Bohemica 139.4 (2014): 621-638. <http://eudml.org/doc/269830>.

@article{Domoshnitsky2014,
abstract = {We propose an approach for studying positivity of Green’s operators of a nonlocal boundary value problem for the system of $n$ linear functional differential equations with the boundary conditions $n_\{i\}x_\{i\}-\sum \nolimits _\{j=1\}^\{n\}m_\{ij\}x_\{j\}=\beta _\{i\}$, $i=1,\dots ,n$, where $n_\{i\}$ and $m_\{ij\}$ are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, $n_\{i\}x_\{i\}=x_\{i\}(\omega )$ or $n_\{i\}x_\{i\}=x_\{i\}(0)-x_\{i\}(\omega )$ and $m_\{ij\}x_\{j\}=\int _\{0\}^\{\omega \}k(s)x_\{j\}(s) \{\rm d\} s +\sum \nolimits _\{r=1\}^\{n_\{ij\}\}c_\{ijr\}x_\{j\}(t_\{ijr\})$ can be considered. It is demonstrated that the positivity of Green’s operator of nonlocal problem follows from the positivity of Green’s operator for auxiliary “local” problem which consists of a “close” equation and the local conditions $n_\{i\}x_\{i\}=\alpha _\{i\}$, $i=1,\dots ,n.$},
author = {Domoshnitsky, Alexander},
journal = {Mathematica Bohemica},
keywords = {functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities; functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities},
language = {eng},
number = {4},
pages = {621-638},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positivity of Green's matrix of nonlocal boundary value problems},
url = {http://eudml.org/doc/269830},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Domoshnitsky, Alexander
TI - Positivity of Green's matrix of nonlocal boundary value problems
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 621
EP - 638
AB - We propose an approach for studying positivity of Green’s operators of a nonlocal boundary value problem for the system of $n$ linear functional differential equations with the boundary conditions $n_{i}x_{i}-\sum \nolimits _{j=1}^{n}m_{ij}x_{j}=\beta _{i}$, $i=1,\dots ,n$, where $n_{i}$ and $m_{ij}$ are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, $n_{i}x_{i}=x_{i}(\omega )$ or $n_{i}x_{i}=x_{i}(0)-x_{i}(\omega )$ and $m_{ij}x_{j}=\int _{0}^{\omega }k(s)x_{j}(s) {\rm d} s +\sum \nolimits _{r=1}^{n_{ij}}c_{ijr}x_{j}(t_{ijr})$ can be considered. It is demonstrated that the positivity of Green’s operator of nonlocal problem follows from the positivity of Green’s operator for auxiliary “local” problem which consists of a “close” equation and the local conditions $n_{i}x_{i}=\alpha _{i}$, $i=1,\dots ,n.$
LA - eng
KW - functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities; functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities
UR - http://eudml.org/doc/269830
ER -

References

top
  1. Agarwal, R. P., Berezansky, L., Braverman, E., Domoshnitsky, A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York (2012). (2012) Zbl1253.34002MR2908263
  2. Agarwal, R. P., Domoshnitsky, A., 10.1017/S0017089509990218, Glasg. Math. J. 52 (2010), 115-136. (2010) Zbl1200.34073MR2587821DOI10.1017/S0017089509990218
  3. Agarwal, R. P., O'Regan, D., 10.1007/PL00012607, NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 419-440. (2002) Zbl1025.34019MR1941266DOI10.1007/PL00012607
  4. Azbelev, N., Maksimov, V., Rakhmatullina, L., Introduction to the Theory of Linear Functional Differential Equations, Advanced Series in Mathematical Science and Engineering 3 World Federation Publishers Company, Atlanta (1995). (1995) Zbl0867.34051MR1422013
  5. Baxley, J. V., 10.1137/0148028, SIAM J. Appl. Math. 48 (1988), 497-505. (1988) Zbl0642.34014MR0941097DOI10.1137/0148028
  6. Bolojan-Nica, O., Infante, G., Precup, R., 10.1016/j.na.2013.08.019, Nonlinear Anal., Theory Methods Appl., Ser. A 94 (2014), 231-242. (2014) Zbl1288.34019MR3120688DOI10.1016/j.na.2013.08.019
  7. Cabada, A., An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl. 2011 (2011), Article ID 893753, 18 pages. (2011) Zbl1230.34001MR2719294
  8. Domoshnitsky, A., Maximum principles and nonoscillation intervals for first order Volterra functional differential equations, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 769-814. (2008) MR2469306
  9. Feller, W., 10.1090/S0002-9947-1954-0063607-6, Trans. Amer. Math. Soc. 77 (1954), 1-31. (1954) Zbl0059.11601MR0063607DOI10.1090/S0002-9947-1954-0063607-6
  10. Graef, J. R., Henderson, J., Yang, B., Existence and nonexistence of positive solutions of an n -th order nonlocal boundary value problem, Dynamic Systems and Applications 5 G. S. Ladde et al. Atlanta, GA (2008), 86-191. (2008) Zbl1203.34026MR2468138
  11. Graef, J. R., Yang, B., Positive solutions of a third order nonlocal boundary value problem, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. (2008) Zbl1153.34014MR2375585
  12. Guidotti, P., Merino, S., Gradual loss of positivity and hidden invariant cones in a scalar heat equation, Differ. Integral Equ. 13 (2000), 1551-1568. (2000) Zbl0983.35013MR1787081
  13. Hakl, R., Lomtatidze, A., Šremr, J., Some Boundary Value Problems for First Order Scalar Functional Differential Equations, Folia, Mathematica 10 Masaryk University, Brno (2002). (2002) Zbl1048.34004MR1909595
  14. Infante, G., 10.3934/dcdss.2008.1.99, Discrete Contin. Dyn. Syst., Ser. S 1 (2008), 99-106. (2008) MR2375586DOI10.3934/dcdss.2008.1.99
  15. Infante, G., Minhós, F. M., Pietramala, P., 10.1016/j.cnsns.2012.05.025, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952-4960. (2012) Zbl1280.34026MR2960289DOI10.1016/j.cnsns.2012.05.025
  16. Infante, G., Webb, J. R. L., 10.1017/S0013091505000532, Proc. Edinb. Math. Soc. 49 (2006), 637-656. (2006) Zbl1115.34026MR2266153DOI10.1017/S0013091505000532
  17. Kiguradze, I., Půža, B., 10.1023/A:1022829931363, Czech. Math. J. 47 (1997), 341-373. (1997) Zbl0930.34047MR1452425DOI10.1023/A:1022829931363
  18. Kiguradze, I., Půža, B., Boundary Value Problems for Systems of Linear Functional Differential Equations, Folia, Mathematica 12 Masaryk University, Brno (2003). (2003) Zbl1161.34300MR2001509
  19. Krasnosel'skij, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitskij, Ya. B., Stetsenko, V. Ya., Approximate Solution of Operator Equations, Russian Nauka, Moskva (1969). (1969) MR0259635
  20. O'Regan, D., 10.1016/S0362-546X(01)00255-3, Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 1163-1174. (2001) Zbl1042.34523MR1970727DOI10.1016/S0362-546X(01)00255-3
  21. Precup, R., Trif, D., 10.1016/j.na.2012.06.008, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 5961-5970. (2012) Zbl1245.34026MR2948310DOI10.1016/j.na.2012.06.008
  22. Sommerfeld, A., Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssig-keitsbewegungen, German Atti del IV Congresso Internazionale dei Matematici 3 Roma (1909), 116-124. (1909) 
  23. Tchaplygin, S., New Method of Approximate Integration of Differential Equations, GTTI, Moskva (1932), Russion. (1932) 
  24. Webb, J. R. L., Multiple positive solutions of some nonlinear heat flow problems, Discrete Contin. Dyn. Syst., suppl. (2005), 895-903. (2005) Zbl1161.34007MR2192752
  25. Webb, J. R. L., 10.1016/j.na.2005.02.055, Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 672-685. (2005) Zbl1153.34320MR2188140DOI10.1016/j.na.2005.02.055
  26. Webb, J. R. L., Infante, G., 10.1112/S0024610706023179, J. Lond. Math. Soc., II. Ser. 74 (2006), 673-693. (2006) Zbl1115.34028MR2286439DOI10.1112/S0024610706023179
  27. Webb, J. R. L., Infante, G., 10.1007/s00030-007-4067-7, NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 45-67. (2008) Zbl1148.34021MR2408344DOI10.1007/s00030-007-4067-7
  28. Yang, Z., 10.1016/j.jmaa.2005.09.002, J. Math. Anal. Appl. 321 (2006), 751-765. (2006) Zbl1106.34014MR2241153DOI10.1016/j.jmaa.2005.09.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.