Unital extensions of -algebras by purely infinite simple algebras
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 989-1001
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Junping, and Wei, Changguo. "Unital extensions of $AF$-algebras by purely infinite simple algebras." Czechoslovak Mathematical Journal 64.4 (2014): 989-1001. <http://eudml.org/doc/269832>.
@article{Liu2014,
abstract = {In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism.},
author = {Liu, Junping, Wei, Changguo},
journal = {Czechoslovak Mathematical Journal},
keywords = {$AF$-algebra; extension; purely infinite simple algebra; -algebra; extension; purely infinite simple algebra},
language = {eng},
number = {4},
pages = {989-1001},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unital extensions of $AF$-algebras by purely infinite simple algebras},
url = {http://eudml.org/doc/269832},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Liu, Junping
AU - Wei, Changguo
TI - Unital extensions of $AF$-algebras by purely infinite simple algebras
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 989
EP - 1001
AB - In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism.
LA - eng
KW - $AF$-algebra; extension; purely infinite simple algebra; -algebra; extension; purely infinite simple algebra
UR - http://eudml.org/doc/269832
ER -
References
top- Blackadar, B., -Theory for Operator Algebras. (2nd ed.), Mathematical Sciences Research Institute 5 Cambridge University Press, Cambridge (1998). (1998) Zbl0913.46054MR1656031
- Eilers, S., Restorff, G., Ruiz, E., 10.4153/CJM-2013-015-7, Can. J. Math. 66 596-625 (2014). (2014) MR3194162DOI10.4153/CJM-2013-015-7
- Eilers, S., Restorff, G., Ruiz, E., 10.1016/j.aim.2009.07.014, Adv. Math. 222 (2009), 2153-2172. (2009) Zbl1207.46055MR2562779DOI10.1016/j.aim.2009.07.014
- Elliott, G. A., Gong, G., On the classification of -algebras of real rank zero. II, Ann. Math. (2) 144 (1996), 497-610. (1996) MR1426886
- Elliott, G. A., Gong, G., Li, L., 10.1007/s00222-006-0033-y, Invent. Math. 168 (2007), 249-320. (2007) Zbl1129.46051MR2289866DOI10.1007/s00222-006-0033-y
- Elliott, G., Kucerovsky, D., 10.2140/pjm.2001.198.385, Pac. J. Math. 198 (2001), 385-409. (2001) Zbl1058.46041MR1835515DOI10.2140/pjm.2001.198.385
- Gong, G., On the classification of simple inductive limit -algebras. I: The reduction theorem, Doc. Math., J. DMV (electronic) 7 (2002), 255-461. (2002) Zbl1024.46018MR2014489
- Kucerovsky, D., Ng, P. W., The corona factorization property and approximate unitary equivalence, Houston J. Math. (electronic) 32 (2006), 531-550. (2006) Zbl1111.46050MR2219330
- Lin, H., 10.1073/pnas.1101079108, Proc. Natl. Acad. Sci. USA 109 (2012), 2842-2847. (2012) Zbl1262.46039MR2903374DOI10.1073/pnas.1101079108
- Lin, H., 10.1007/s00222-010-0280-9, Invent. Math. 183 (2011), 385-450. (2011) MR2772085DOI10.1007/s00222-010-0280-9
- Lin, H., Approximate homotopy of homomorphisms from into a simple -algebra, Mem. Am. Math. Soc. 205 (2010), 131 pages. (2010) MR2643313
- Lin, H., 10.2140/pjm.2007.229.389, Pac. J. Math. 229 (2007), 389-428. (2007) Zbl1152.46049MR2276517DOI10.2140/pjm.2007.229.389
- Lin, H., 10.1215/S0012-7094-04-12514-X, Duke Math. J. 125 (2004), 91-119. (2004) Zbl1068.46032MR2097358DOI10.1215/S0012-7094-04-12514-X
- Lin, H., Classification of simple -algebras and higher dimensional noncommutative tori, Ann. Math. (2) 157 (2003), 521-544. (2003) MR1973053
- Maclane, S., Homology, Die Grundlehren der mathematischen Wissenschaften. Bd. 114 Springer, Berlin (1963), German. (1963) Zbl0133.26502MR0156879
- Phillips, N. C., A classification theorem for nuclear purely infinite simple -algebras, Doc. Math., J. DMV (electronic) 5 (2000), 49-114. (2000) Zbl0943.46037MR1745197
- Rørdam, M., 10.1007/s002080050067, Math. Ann. 308 (1997), 93-117. (1997) MR1446202DOI10.1007/s002080050067
- Rørdam, M., Larsen, F., Laustsen, N., An Introduction to -Theory for -Algebras, London Mathematical Society Student Texts 49 Cambridge University Press, Cambridge (2000). (2000) Zbl0967.19001MR1783408
- Rørdam, M., Størmer, E., Classification of Nuclear -Algebras. Entropy in Operator Algebras, Encyclopaedia of Mathematical Sciences 126. Operator Algebras and Non-Commutative Geometry 7 Springer, Berlin (2002). (2002) Zbl0985.00012MR1878881
- Wei, C., 10.1007/s11425-011-4225-6, Sci. China, Math. 55 (2012), 179-186. (2012) Zbl1253.46066MR2873811DOI10.1007/s11425-011-4225-6
- Wei, C., 10.1142/S0129167X11007227, Int. J. Math. 22 (2011), 1187-1208. (2011) MR2826560DOI10.1142/S0129167X11007227
- Wei, C., 10.1016/j.jfa.2009.10.009, J. Funct. Anal. 258 (2010), 650-664. (2010) Zbl1194.46103MR2557950DOI10.1016/j.jfa.2009.10.009
- Wei, C., Classification of unital extensions and the BDF-theory, Submitted to Houst. J. Math.
- Wei, C., Wang, L., Isomorphism of extensions of , Sci. China, Math. 54 (2011), 281-286. (2011) Zbl1225.46051MR2771204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.