Unital extensions of A F -algebras by purely infinite simple algebras

Junping Liu; Changguo Wei

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 4, page 989-1001
  • ISSN: 0011-4642

Abstract

top
In this paper, we consider the classification of unital extensions of A F -algebras by their six-term exact sequences in K -theory. Using the classification theory of C * -algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of A F -algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of A F -algebras by stable purely infinite simple C * -algebras with nontrivial K 1 -groups up to isomorphism.

How to cite

top

Liu, Junping, and Wei, Changguo. "Unital extensions of $AF$-algebras by purely infinite simple algebras." Czechoslovak Mathematical Journal 64.4 (2014): 989-1001. <http://eudml.org/doc/269832>.

@article{Liu2014,
abstract = {In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism.},
author = {Liu, Junping, Wei, Changguo},
journal = {Czechoslovak Mathematical Journal},
keywords = {$AF$-algebra; extension; purely infinite simple algebra; -algebra; extension; purely infinite simple algebra},
language = {eng},
number = {4},
pages = {989-1001},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unital extensions of $AF$-algebras by purely infinite simple algebras},
url = {http://eudml.org/doc/269832},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Liu, Junping
AU - Wei, Changguo
TI - Unital extensions of $AF$-algebras by purely infinite simple algebras
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 989
EP - 1001
AB - In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism.
LA - eng
KW - $AF$-algebra; extension; purely infinite simple algebra; -algebra; extension; purely infinite simple algebra
UR - http://eudml.org/doc/269832
ER -

References

top
  1. Blackadar, B., K -Theory for Operator Algebras. (2nd ed.), Mathematical Sciences Research Institute 5 Cambridge University Press, Cambridge (1998). (1998) Zbl0913.46054MR1656031
  2. Eilers, S., Restorff, G., Ruiz, E., 10.4153/CJM-2013-015-7, Can. J. Math. 66 596-625 (2014). (2014) MR3194162DOI10.4153/CJM-2013-015-7
  3. Eilers, S., Restorff, G., Ruiz, E., 10.1016/j.aim.2009.07.014, Adv. Math. 222 (2009), 2153-2172. (2009) Zbl1207.46055MR2562779DOI10.1016/j.aim.2009.07.014
  4. Elliott, G. A., Gong, G., On the classification of C * -algebras of real rank zero. II, Ann. Math. (2) 144 (1996), 497-610. (1996) MR1426886
  5. Elliott, G. A., Gong, G., Li, L., 10.1007/s00222-006-0033-y, Invent. Math. 168 (2007), 249-320. (2007) Zbl1129.46051MR2289866DOI10.1007/s00222-006-0033-y
  6. Elliott, G., Kucerovsky, D., 10.2140/pjm.2001.198.385, Pac. J. Math. 198 (2001), 385-409. (2001) Zbl1058.46041MR1835515DOI10.2140/pjm.2001.198.385
  7. Gong, G., On the classification of simple inductive limit C * -algebras. I: The reduction theorem, Doc. Math., J. DMV (electronic) 7 (2002), 255-461. (2002) Zbl1024.46018MR2014489
  8. Kucerovsky, D., Ng, P. W., The corona factorization property and approximate unitary equivalence, Houston J. Math. (electronic) 32 (2006), 531-550. (2006) Zbl1111.46050MR2219330
  9. Lin, H., 10.1073/pnas.1101079108, Proc. Natl. Acad. Sci. USA 109 (2012), 2842-2847. (2012) Zbl1262.46039MR2903374DOI10.1073/pnas.1101079108
  10. Lin, H., 10.1007/s00222-010-0280-9, Invent. Math. 183 (2011), 385-450. (2011) MR2772085DOI10.1007/s00222-010-0280-9
  11. Lin, H., Approximate homotopy of homomorphisms from C ( X ) into a simple C * -algebra, Mem. Am. Math. Soc. 205 (2010), 131 pages. (2010) MR2643313
  12. Lin, H., 10.2140/pjm.2007.229.389, Pac. J. Math. 229 (2007), 389-428. (2007) Zbl1152.46049MR2276517DOI10.2140/pjm.2007.229.389
  13. Lin, H., 10.1215/S0012-7094-04-12514-X, Duke Math. J. 125 (2004), 91-119. (2004) Zbl1068.46032MR2097358DOI10.1215/S0012-7094-04-12514-X
  14. Lin, H., Classification of simple C * -algebras and higher dimensional noncommutative tori, Ann. Math. (2) 157 (2003), 521-544. (2003) MR1973053
  15. Maclane, S., Homology, Die Grundlehren der mathematischen Wissenschaften. Bd. 114 Springer, Berlin (1963), German. (1963) Zbl0133.26502MR0156879
  16. Phillips, N. C., A classification theorem for nuclear purely infinite simple C * -algebras, Doc. Math., J. DMV (electronic) 5 (2000), 49-114. (2000) Zbl0943.46037MR1745197
  17. Rørdam, M., 10.1007/s002080050067, Math. Ann. 308 (1997), 93-117. (1997) MR1446202DOI10.1007/s002080050067
  18. Rørdam, M., Larsen, F., Laustsen, N., An Introduction to K -Theory for C * -Algebras, London Mathematical Society Student Texts 49 Cambridge University Press, Cambridge (2000). (2000) Zbl0967.19001MR1783408
  19. Rørdam, M., Størmer, E., Classification of Nuclear C * -Algebras. Entropy in Operator Algebras, Encyclopaedia of Mathematical Sciences 126. Operator Algebras and Non-Commutative Geometry 7 Springer, Berlin (2002). (2002) Zbl0985.00012MR1878881
  20. Wei, C., 10.1007/s11425-011-4225-6, Sci. China, Math. 55 (2012), 179-186. (2012) Zbl1253.46066MR2873811DOI10.1007/s11425-011-4225-6
  21. Wei, C., 10.1142/S0129167X11007227, Int. J. Math. 22 (2011), 1187-1208. (2011) MR2826560DOI10.1142/S0129167X11007227
  22. Wei, C., 10.1016/j.jfa.2009.10.009, J. Funct. Anal. 258 (2010), 650-664. (2010) Zbl1194.46103MR2557950DOI10.1016/j.jfa.2009.10.009
  23. Wei, C., Classification of unital extensions and the BDF-theory, Submitted to Houst. J. Math. 
  24. Wei, C., Wang, L., Isomorphism of extensions of C ( 𝕋 2 ) , Sci. China, Math. 54 (2011), 281-286. (2011) Zbl1225.46051MR2771204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.