Semi-slant Riemannian maps into almost Hermitian manifolds
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 1045-1061
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPark, Kwang-Soon, and Şahin, Bayram. "Semi-slant Riemannian maps into almost Hermitian manifolds." Czechoslovak Mathematical Journal 64.4 (2014): 1045-1061. <http://eudml.org/doc/269835>.
@article{Park2014,
abstract = {We introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal maps, which are useful for proving various complex-analytic properties of stable harmonic maps from complex projective space and give many examples of such maps.},
author = {Park, Kwang-Soon, Şahin, Bayram},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riemannian map; semi-slant Riemannian map; harmonic map; totally geodesic map; Riemannian map; semi-slant Riemannian map; harmonic map; totally geodesic map},
language = {eng},
number = {4},
pages = {1045-1061},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semi-slant Riemannian maps into almost Hermitian manifolds},
url = {http://eudml.org/doc/269835},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Park, Kwang-Soon
AU - Şahin, Bayram
TI - Semi-slant Riemannian maps into almost Hermitian manifolds
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1045
EP - 1061
AB - We introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal maps, which are useful for proving various complex-analytic properties of stable harmonic maps from complex projective space and give many examples of such maps.
LA - eng
KW - Riemannian map; semi-slant Riemannian map; harmonic map; totally geodesic map; Riemannian map; semi-slant Riemannian map; harmonic map; totally geodesic map
UR - http://eudml.org/doc/269835
ER -
References
top- Abraham, R., Marsden, J. E., Ratiu, T., 10.1007/978-1-4612-1029-0, Applied Mathematical Sciences 75 Springer, New York (1988). (1988) MR0960687DOI10.1007/978-1-4612-1029-0
- Aprodu, M. A., Aprodu, M., 10.1007/s002290050198, Manuscr. Math. 100 (1999), 103-121. (1999) Zbl0938.53035MR1714452DOI10.1007/s002290050198
- Aprodu, M. A., Aprodu, M., Brînzănescu, V., 10.1142/S0129167X0000057X, Int. J. Math. 11 (2000), 1177-1191. (2000) Zbl0978.58006MR1809307DOI10.1142/S0129167X0000057X
- Baird, P., Wood, J. C., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs. New Series 29 Clarendon Press, Oxford University Press, Oxford (2003). (2003) Zbl1055.53049MR2044031
- Bejancu, A., Geometry of CR-Submanifolds, Mathematics and Its Applications (East European Series) 23 D. Reidel Publishing Co., Dordrecht (1986). (1986) Zbl0605.53001MR0861408
- Burns, D., Burstall, F., Bartolomeis, P. de, Rawnsley, J., 10.4310/jdg/1214443603, J. Differ. Geom. 30 (1989), 579-594. (1989) Zbl0678.53062MR1010173DOI10.4310/jdg/1214443603
- Candelas, P., Horowitz, G. T., Strominger, A., Witten, E., Vacuum configurations for superstrings, Nuclear Phys. B (electronic only) 258 (1985), 46-74. (1985) MR0800347
- Chen, B.-Y., Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Dept. of Mathematics, Leuven (1990). (1990) Zbl0716.53006MR1099374
- Chen, B.-Y., 10.1017/S0004972700017925, Bull. Aust. Math. Soc. 41 (1990), 135-147. (1990) Zbl0677.53060MR1043974DOI10.1017/S0004972700017925
- Chinea, D., 10.1007/BF02844887, Rend. Circ. Mat. Palermo (2) 34 (1985), 89-104. (1985) Zbl0589.53041MR0790818DOI10.1007/BF02844887
- Eells, J. J., Sampson, J. H., 10.2307/2373037, Am. J. Math. 86 (1964), 109-160. (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
- Esposito, G., 10.1142/S0219887805000752, Int. J. Geom. Methods Mod. Phys. 2 (2005), 675-731. (2005) Zbl1086.83025MR2162076DOI10.1142/S0219887805000752
- Falcitelli, M., Ianus, S., Pastore, A. M., Riemannian Submersions and Related Topics, World Scientific, River Edge, New York (2004). (2004) Zbl1067.53016MR2110043
- Fischer, A. E., 10.1090/conm/132/1188447, Mathematical aspects of classical field theory. Proc. of the AMS-IMS-SIAM Joint Summer Research Conf., Seattle, Washington, USA, 1991 Contemp. Math. 132 American Mathematical Society, Providence (1992), 331-366 M. J. Gotay et al. (1992) Zbl0780.53033MR1188447DOI10.1090/conm/132/1188447
- García-Río, E., Kupeli, D. N., Semi-Riemannian Maps and Their Applications, Mathematics and Its Applications 475 Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0924.53003MR1700746
- Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737. (1967) Zbl0147.21201MR0205184
- Ianuş, S., Mazzocco, R., Vîlcu, G. E., 10.1007/s10440-008-9241-3, Acta Appl. Math. 104 (2008), 83-89. (2008) Zbl1151.53329MR2434668DOI10.1007/s10440-008-9241-3
- Lerner, D. E., eds., P. D. Sommers, Complex Manifold Techniques in Theoretical Physics, Research Notes in Mathematics 32 Pitman Advanced Publishing Program San Francisco (1979). (1979) Zbl0407.00015MR0564439
- Loubeau, E., Slobodeanu, R., 10.1007/s10711-009-9409-7, Geom. Dedicata 145 (2010), 103-126. (2010) Zbl1194.53055MR2600948DOI10.1007/s10711-009-9409-7
- Marrero, J. C., Rocha, J., 10.1007/BF01278477, Geom. Dedicata 52 (1994), 271-289. (1994) Zbl0810.53054MR1299880DOI10.1007/BF01278477
- O'Neill, B., 10.1307/mmj/1028999604, Mich. Math. J. 13 (1966), 459-469. (1966) Zbl0145.18602MR0200865DOI10.1307/mmj/1028999604
- Papaghiuc, N., Semi-slant submanifolds of a Kaehlerian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 40 (1994), 55-61. (1994) Zbl0847.53012MR1328947
- Şahin, B., 10.1142/S0219887812500806, Int. J. Geom. Methods Mod. Phys. 10 (2013), Paper No. 1250080, 12 pages. (2013) Zbl1263.53025MR3004125DOI10.1142/S0219887812500806
- Şahin, B., 10.1142/S0219887811005725, Int. J. Geom. Methods Mod. Phys. 8 (2011), 1439-1454. (2011) Zbl1242.53039MR2873816DOI10.1142/S0219887811005725
- Şahin, B., 10.1142/S0219887810004324, Int. J. Geom. Methods Mod. Phys. 7 (2010), 337-355. (2010) Zbl1193.53148MR2646767DOI10.1142/S0219887810004324
- Tromba, A. J., Teichmüller Theory in Riemannian Geometry: Based on Lecture Notes by Jochen Denzler, Lectures in Mathematics ETH Zürich Birkhäuser, Basel (1992). (1992) Zbl0785.53001MR1164870
- Watson, B., 10.4310/jdg/1214433303, J. Differ. Geom. 11 (1976), 147-165. (1976) Zbl0355.53037MR0407784DOI10.4310/jdg/1214433303
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.