On the complexity of some classes of Banach spaces and non-universality

Bruno M. Braga

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 4, page 1123-1147
  • ISSN: 0011-4642

Abstract

top
These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in SB . At last, we give several applications of those results to non-universality results.

How to cite

top

Braga, Bruno M.. "On the complexity of some classes of Banach spaces and non-universality." Czechoslovak Mathematical Journal 64.4 (2014): 1123-1147. <http://eudml.org/doc/269847>.

@article{Braga2014,
abstract = {These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in $\{\rm SB\}$. At last, we give several applications of those results to non-universality results.},
author = {Braga, Bruno M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree; Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree},
language = {eng},
number = {4},
pages = {1123-1147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the complexity of some classes of Banach spaces and non-universality},
url = {http://eudml.org/doc/269847},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Braga, Bruno M.
TI - On the complexity of some classes of Banach spaces and non-universality
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1123
EP - 1147
AB - These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in ${\rm SB}$. At last, we give several applications of those results to non-universality results.
LA - eng
KW - Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree; Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree
UR - http://eudml.org/doc/269847
ER -

References

top
  1. Albiac, F., Kalton, N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics 233 Springer, Berlin (2006). (2006) MR2192298
  2. Argyros, S. A., Dodos, P., 10.1016/j.aim.2006.05.013, Adv. Math. 209 (2007), 666-748. (2007) Zbl1109.03047MR2296312DOI10.1016/j.aim.2006.05.013
  3. Argyros, S. A., Haydon, R. G., 10.1007/s11511-011-0058-y, Acta Math. 206 (2011), 1-54. (2011) Zbl1223.46007MR2784662DOI10.1007/s11511-011-0058-y
  4. Bahreini, M., Bator, E., Ghenciu, I., 10.4153/CMB-2011-097-2, Can. Math. Bull. 55 (2012), 449-461. (2012) Zbl1255.46006MR2957262DOI10.4153/CMB-2011-097-2
  5. Beauzamy, B., 10.7146/math.scand.a-11818, Math. Scand. 44 (1979), 357-384. (1979) Zbl0427.46007MR0555227DOI10.7146/math.scand.a-11818
  6. Bossard, B., 10.4064/fm172-2-3, Fundam. Math. 172 (2002), 117-152. (2002) Zbl1029.46009MR1899225DOI10.4064/fm172-2-3
  7. Bourgain, J., Delbaen, F., 10.1007/BF02414188, Acta Math. 145 (1980), 155-176. (1980) MR0590288DOI10.1007/BF02414188
  8. Diestel, J., A survey of results related to the Dunford-Pettis property, Proc. Conf. on Integration, Topology, and Geometry in Linear Spaces Contemp. Math. 2 American Mathematical Society (1980), 15-60. (1980) Zbl0571.46013MR0621850
  9. Diestel, J., Jarchow, H., Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). (1995) Zbl0855.47016MR1342297
  10. J. Diestel, J. J. Uhl, Jr., Vector Measures, Mathematical Surveys 15 American Mathematical Society, Providence (1977). (1977) Zbl0369.46039MR0453964
  11. Diestel, J., Seifert, C. J., The Banach-Saks ideal, I. Operators acting on C ( Ω ) , Commentat. Math. 1 (1978), 109-118. (1978) Zbl0385.46010MR0504156
  12. Dodos, P., Banach Spaces and Descriptive Set Theory: Selected Topics, Lecture Notes in Mathematics 1993 Springer, Berlin (2010). (2010) Zbl1215.46002MR2598479
  13. Fakhoury, H., 10.7146/math.scand.a-11720, French Math. Scand. 41 (1977), 277-289. (1977) MR0500085DOI10.7146/math.scand.a-11720
  14. Farnum, N. R., 10.4153/CJM-1974-009-9, Can. J. Math. 26 (1974), 91-97. (1974) Zbl0253.54026MR0367636DOI10.4153/CJM-1974-009-9
  15. Girardi, M., 10.2140/pjm.1991.148.59, Pac. J. Math. 148 (1991), 59-79 correction ibid. 157 389-394 (1993). (1993) MR1091530DOI10.2140/pjm.1991.148.59
  16. Huang, S.-Z., Neerven, J. M. A. M. van, 10.1006/jmaa.1998.6211, J. Math. Anal. Appl. 231 (1999), 1-20. (1999) MR1676753DOI10.1006/jmaa.1998.6211
  17. James, R. C., 10.4064/sm-95-3-255-262, Stud. Math. 95 (1990), 255-262. (1990) Zbl0744.46010MR1060728DOI10.4064/sm-95-3-255-262
  18. James, R. C., Structures of Banach spaces: Radon-Nikodym and other properties, General Topology and Modern Analysis Proc. Conf., Riverside, 1980 L. F. McAuley, et al. Academic Press, New York (1981), 347-363. (1981) MR0619061
  19. James, R. C., 10.2307/1969430, Ann. Math. (2) 52 (1950), 518-527. (1950) Zbl0039.12202MR0039915DOI10.2307/1969430
  20. Johnson, W. B., (eds.), J. Lindenstrauss, Handbook of the Geometry of Banach Spaces. Vol. 1, Elsevier, Amsterdam (2001). (2001) MR1863689
  21. Kechris, A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics 156 Springer, Berlin (1995). (1995) Zbl0819.04002MR1321597
  22. Ostrovskii, M. I., 10.1080/16073606.1994.9631766, Quaest. Math. 17 (1994), 259-319. (1994) MR1290670DOI10.1080/16073606.1994.9631766
  23. Partington, J. R., 10.1017/S0305004100054025, Math. Proc. Camb. Philos. Soc. 82 (1977), 369-374. (1977) Zbl0368.46018MR0448036DOI10.1017/S0305004100054025
  24. Pełczyński, A., 10.4064/sm-32-3-247-268, Stud. Math. 32 (1969), 247-268. (1969) Zbl0185.37401MR0241954DOI10.4064/sm-32-3-247-268
  25. Pełczyński, A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 10 (1962), 641-648. (1962) Zbl0107.32504MR0149295
  26. Puglisi, D., The position of 𝒦 ( X , Y ) in ( X , Y ) , Glasg. Math. J. 56 (2014), 409-417. (2014) Zbl1296.46018MR3187907
  27. Rosenthal, H. P., 10.1073/pnas.71.6.2411, Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413. (1974) MR0358307DOI10.1073/pnas.71.6.2411
  28. Rosenthal, H. P., 10.1007/BF02394572, Acta Math. 124 (1970), 205-248. (1970) MR0257721DOI10.1007/BF02394572
  29. Schlumprech, Th., Notes on Descriptive Set Theory and Applications to Banach Spaces, Class notes for Reading Course in Spring/Summer (2008). (2008) 
  30. Tanbay, B., Direct sums and the Schur property, Turk. J. Math. 22 (1998), 349-354. (1998) Zbl0923.46019MR1675081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.