On the complexity of some classes of Banach spaces and non-universality
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 1123-1147
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBraga, Bruno M.. "On the complexity of some classes of Banach spaces and non-universality." Czechoslovak Mathematical Journal 64.4 (2014): 1123-1147. <http://eudml.org/doc/269847>.
@article{Braga2014,
abstract = {These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in $\{\rm SB\}$. At last, we give several applications of those results to non-universality results.},
author = {Braga, Bruno M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree; Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree},
language = {eng},
number = {4},
pages = {1123-1147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the complexity of some classes of Banach spaces and non-universality},
url = {http://eudml.org/doc/269847},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Braga, Bruno M.
TI - On the complexity of some classes of Banach spaces and non-universality
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1123
EP - 1147
AB - These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in ${\rm SB}$. At last, we give several applications of those results to non-universality results.
LA - eng
KW - Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree; Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree
UR - http://eudml.org/doc/269847
ER -
References
top- Albiac, F., Kalton, N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics 233 Springer, Berlin (2006). (2006) MR2192298
- Argyros, S. A., Dodos, P., 10.1016/j.aim.2006.05.013, Adv. Math. 209 (2007), 666-748. (2007) Zbl1109.03047MR2296312DOI10.1016/j.aim.2006.05.013
- Argyros, S. A., Haydon, R. G., 10.1007/s11511-011-0058-y, Acta Math. 206 (2011), 1-54. (2011) Zbl1223.46007MR2784662DOI10.1007/s11511-011-0058-y
- Bahreini, M., Bator, E., Ghenciu, I., 10.4153/CMB-2011-097-2, Can. Math. Bull. 55 (2012), 449-461. (2012) Zbl1255.46006MR2957262DOI10.4153/CMB-2011-097-2
- Beauzamy, B., 10.7146/math.scand.a-11818, Math. Scand. 44 (1979), 357-384. (1979) Zbl0427.46007MR0555227DOI10.7146/math.scand.a-11818
- Bossard, B., 10.4064/fm172-2-3, Fundam. Math. 172 (2002), 117-152. (2002) Zbl1029.46009MR1899225DOI10.4064/fm172-2-3
- Bourgain, J., Delbaen, F., 10.1007/BF02414188, Acta Math. 145 (1980), 155-176. (1980) MR0590288DOI10.1007/BF02414188
- Diestel, J., A survey of results related to the Dunford-Pettis property, Proc. Conf. on Integration, Topology, and Geometry in Linear Spaces Contemp. Math. 2 American Mathematical Society (1980), 15-60. (1980) Zbl0571.46013MR0621850
- Diestel, J., Jarchow, H., Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). (1995) Zbl0855.47016MR1342297
- J. Diestel, J. J. Uhl, Jr., Vector Measures, Mathematical Surveys 15 American Mathematical Society, Providence (1977). (1977) Zbl0369.46039MR0453964
- Diestel, J., Seifert, C. J., The Banach-Saks ideal, I. Operators acting on , Commentat. Math. 1 (1978), 109-118. (1978) Zbl0385.46010MR0504156
- Dodos, P., Banach Spaces and Descriptive Set Theory: Selected Topics, Lecture Notes in Mathematics 1993 Springer, Berlin (2010). (2010) Zbl1215.46002MR2598479
- Fakhoury, H., 10.7146/math.scand.a-11720, French Math. Scand. 41 (1977), 277-289. (1977) MR0500085DOI10.7146/math.scand.a-11720
- Farnum, N. R., 10.4153/CJM-1974-009-9, Can. J. Math. 26 (1974), 91-97. (1974) Zbl0253.54026MR0367636DOI10.4153/CJM-1974-009-9
- Girardi, M., 10.2140/pjm.1991.148.59, Pac. J. Math. 148 (1991), 59-79 correction ibid. 157 389-394 (1993). (1993) MR1091530DOI10.2140/pjm.1991.148.59
- Huang, S.-Z., Neerven, J. M. A. M. van, 10.1006/jmaa.1998.6211, J. Math. Anal. Appl. 231 (1999), 1-20. (1999) MR1676753DOI10.1006/jmaa.1998.6211
- James, R. C., 10.4064/sm-95-3-255-262, Stud. Math. 95 (1990), 255-262. (1990) Zbl0744.46010MR1060728DOI10.4064/sm-95-3-255-262
- James, R. C., Structures of Banach spaces: Radon-Nikodym and other properties, General Topology and Modern Analysis Proc. Conf., Riverside, 1980 L. F. McAuley, et al. Academic Press, New York (1981), 347-363. (1981) MR0619061
- James, R. C., 10.2307/1969430, Ann. Math. (2) 52 (1950), 518-527. (1950) Zbl0039.12202MR0039915DOI10.2307/1969430
- Johnson, W. B., (eds.), J. Lindenstrauss, Handbook of the Geometry of Banach Spaces. Vol. 1, Elsevier, Amsterdam (2001). (2001) MR1863689
- Kechris, A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics 156 Springer, Berlin (1995). (1995) Zbl0819.04002MR1321597
- Ostrovskii, M. I., 10.1080/16073606.1994.9631766, Quaest. Math. 17 (1994), 259-319. (1994) MR1290670DOI10.1080/16073606.1994.9631766
- Partington, J. R., 10.1017/S0305004100054025, Math. Proc. Camb. Philos. Soc. 82 (1977), 369-374. (1977) Zbl0368.46018MR0448036DOI10.1017/S0305004100054025
- Pełczyński, A., 10.4064/sm-32-3-247-268, Stud. Math. 32 (1969), 247-268. (1969) Zbl0185.37401MR0241954DOI10.4064/sm-32-3-247-268
- Pełczyński, A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 10 (1962), 641-648. (1962) Zbl0107.32504MR0149295
- Puglisi, D., The position of in , Glasg. Math. J. 56 (2014), 409-417. (2014) Zbl1296.46018MR3187907
- Rosenthal, H. P., 10.1073/pnas.71.6.2411, Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413. (1974) MR0358307DOI10.1073/pnas.71.6.2411
- Rosenthal, H. P., 10.1007/BF02394572, Acta Math. 124 (1970), 205-248. (1970) MR0257721DOI10.1007/BF02394572
- Schlumprech, Th., Notes on Descriptive Set Theory and Applications to Banach Spaces, Class notes for Reading Course in Spring/Summer (2008). (2008)
- Tanbay, B., Direct sums and the Schur property, Turk. J. Math. 22 (1998), 349-354. (1998) Zbl0923.46019MR1675081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.