Methods of analysis of the condition for correct solvability in of general Sturm-Liouville equations
Nina A. Chernyavskaya; Leonid A. Shuster
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 1067-1098
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChernyavskaya, Nina A., and Shuster, Leonid A.. "Methods of analysis of the condition for correct solvability in $L_p (\mathbb {R})$ of general Sturm-Liouville equations." Czechoslovak Mathematical Journal 64.4 (2014): 1067-1098. <http://eudml.org/doc/269850>.
@article{Chernyavskaya2014,
abstract = {We consider the equation \[ - (r(x)y^\{\prime \}(x))^\{\prime \}+q(x)y(x)=f(x),\quad x\in \mathbb \{R\} \qquad \mathrm \{\{(*)\}\}\]
where $f\in L_p(\mathbb \{R\})$, $p\in (1,\infty )$ and \begin\{gather\} r>0,\quad q\ge 0,\quad \frac\{1\}\{r\}\in L\_1^\{\rm loc\}(\mathbb \{R\}),\quad q\in L\_1^\{\rm loc\}(\mathbb \{R\}), \nonumber \\ \lim \_\{|d|\rightarrow \infty \}\int \_\{x-d\}^x \frac\{\{\rm d\} t\}\{r(t)\}\cdot \int \_\{x-d\}^x q(t) \{\rm d\} t=\infty . \nonumber \end\{gather\}
In an earlier paper, we obtained a criterion for correct solvability of ($*$) in $L_p(\mathbb \{R\}),$$p\in (1,\infty ).$ In this criterion, we use values of some auxiliary implicit functions in the coefficients $r$ and $q$ of equation ($*$). Unfortunately, it is usually impossible to compute values of these functions. In the present paper we obtain sharp by order, two-sided estimates (an estimate of a function $f(x)$ for $x\in (a,b)$ through a function $g(x)$ is sharp by order if $c^\{-1\}|g(x)|\le |f(x)|\le c|g(x)|,$$x\in (a,b),$$c=\rm const$) of auxiliary functions, which guarantee efficient study of the problem of correct solvability of ($*$) in $L_p(\mathbb \{R\}),$$p\in (1,\infty ).$},
author = {Chernyavskaya, Nina A., Shuster, Leonid A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {correct solvability; Sturm-Liouville equation; correct solvability; Sturm-Liouville equation},
language = {eng},
number = {4},
pages = {1067-1098},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Methods of analysis of the condition for correct solvability in $L_p (\mathbb \{R\})$ of general Sturm-Liouville equations},
url = {http://eudml.org/doc/269850},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Chernyavskaya, Nina A.
AU - Shuster, Leonid A.
TI - Methods of analysis of the condition for correct solvability in $L_p (\mathbb {R})$ of general Sturm-Liouville equations
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1067
EP - 1098
AB - We consider the equation \[ - (r(x)y^{\prime }(x))^{\prime }+q(x)y(x)=f(x),\quad x\in \mathbb {R} \qquad \mathrm {{(*)}}\]
where $f\in L_p(\mathbb {R})$, $p\in (1,\infty )$ and \begin{gather} r>0,\quad q\ge 0,\quad \frac{1}{r}\in L_1^{\rm loc}(\mathbb {R}),\quad q\in L_1^{\rm loc}(\mathbb {R}), \nonumber \\ \lim _{|d|\rightarrow \infty }\int _{x-d}^x \frac{{\rm d} t}{r(t)}\cdot \int _{x-d}^x q(t) {\rm d} t=\infty . \nonumber \end{gather}
In an earlier paper, we obtained a criterion for correct solvability of ($*$) in $L_p(\mathbb {R}),$$p\in (1,\infty ).$ In this criterion, we use values of some auxiliary implicit functions in the coefficients $r$ and $q$ of equation ($*$). Unfortunately, it is usually impossible to compute values of these functions. In the present paper we obtain sharp by order, two-sided estimates (an estimate of a function $f(x)$ for $x\in (a,b)$ through a function $g(x)$ is sharp by order if $c^{-1}|g(x)|\le |f(x)|\le c|g(x)|,$$x\in (a,b),$$c=\rm const$) of auxiliary functions, which guarantee efficient study of the problem of correct solvability of ($*$) in $L_p(\mathbb {R}),$$p\in (1,\infty ).$
LA - eng
KW - correct solvability; Sturm-Liouville equation; correct solvability; Sturm-Liouville equation
UR - http://eudml.org/doc/269850
ER -
References
top- Chernyavskaya, N. A., El-Natanov, N., Shuster, L. A., Weighted estimates for solutions of a Sturm-Liouville equation in the space , Proc. R. Soc. Edinb., Sect. A, Math. 141 (2011), 1175-1206. (2011) MR2855893
- Chernyavskaya, N., Shuster, L., 10.1112/jlms/jdp012, J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. (2009) MR2520380DOI10.1112/jlms/jdp012
- Chernyavskaya, N., Shuster, L., 10.1090/S0002-9939-01-06145-7, Proc. Am. Math. Soc. 130 (2002), 1043-1054. (2002) Zbl0994.34014MR1873778DOI10.1090/S0002-9939-01-06145-7
- Chernyavskaya, N., Shuster, L., Regularity of the inversion problem for a Sturm-Liouville equation in , Methods Appl. Anal. 7 (2000), 65-84. (2000) MR1796006
- Chernyavskaya, N., Shuster, L., 10.1090/S0002-9939-99-05049-2, Proc. Am. Math. Soc. 127 (1999), 1413-1426. (1999) Zbl0918.34032MR1625725DOI10.1090/S0002-9939-99-05049-2
- Chernyavskaya, N., Shuster, L., 10.1112/S0025579300007919, Mathematika 46 (1999), 453-470. (1999) MR1832636DOI10.1112/S0025579300007919
- Chernyavskaya, N., Shuster, L., Solvability in of the Dirichlet problem for a singular nonhomogeneous Sturm-Liouville equation, Methods Appl. Anal. 5 (1998), 259-272. (1998) Zbl0924.34012MR1659147
- Mynbaev, K. T., Otelbaev, M. O., Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moskva Russian (1988). (1988) MR0950172
- Titchmarsh, E. C., The Theory of Functions. (2. ed.), University Press, Oxford (1939). (1939) MR0197687
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.