Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry

Constantin Călin; Mircea Crasmareanu

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 4, page 945-960
  • ISSN: 0011-4642

Abstract

top
We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly Legendre) curves which are helices are completely determined.

How to cite

top

Călin, Constantin, and Crasmareanu, Mircea. "Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry." Czechoslovak Mathematical Journal 64.4 (2014): 945-960. <http://eudml.org/doc/269855>.

@article{Călin2014,
abstract = {We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly Legendre) curves which are helices are completely determined.},
author = {Călin, Constantin, Crasmareanu, Mircea},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bianchi-Cartan-Vranceanu metric; slant curve; Legendre curve; Lancret invariant; helix; Bianchi-Cartan-Vranceanu metric; slant curve; Legendre curve; Lancret invariant; helix},
language = {eng},
number = {4},
pages = {945-960},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry},
url = {http://eudml.org/doc/269855},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Călin, Constantin
AU - Crasmareanu, Mircea
TI - Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 945
EP - 960
AB - We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly Legendre) curves which are helices are completely determined.
LA - eng
KW - Bianchi-Cartan-Vranceanu metric; slant curve; Legendre curve; Lancret invariant; helix; Bianchi-Cartan-Vranceanu metric; slant curve; Legendre curve; Lancret invariant; helix
UR - http://eudml.org/doc/269855
ER -

References

top
  1. Barros, M., 10.1090/S0002-9939-97-03692-7, Proc. Am. Math. Soc. 125 1503-1509 (1997). (1997) Zbl0876.53035MR1363411DOI10.1090/S0002-9939-97-03692-7
  2. Belkhelfa, M., Dillen, F., Inoguchi, J.-I., Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces, {PDEs, Submanifolds and Affine Differential Geometry. Contributions of a Conference, Warsaw, Poland} B. Opozda et al. Banach Center Publ. 57 Polish Academy of Sciences, Institute of Mathematics, Warsaw 67-87 (2002). (2002) Zbl1029.53071MR1972463
  3. Belkhelfa, M., Hirică, I. E., Rosca, R., Verstraelen, L., On Legendre curves in Riemannian and Lorentzian Sasaki spaces, Soochow J. Math. 28 81-91 (2002). (2002) Zbl1013.53016MR1893607
  4. Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203 Birkhäuser, Boston (2010). (2010) Zbl1246.53001MR2682326
  5. Blair, D. E., Dillen, F., Verstraelen, L., Vrancken, L., Deformations of Legendre curves, Note Mat. 15 99-110 (1995). (1995) Zbl0907.53037MR1611801
  6. Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P., The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces, {Modern Trends in Geometry and Topology. Proceedings of the 7th International Workshop on Differential Geometry and Its Applications, Deva, Romania, 2005} D. Andrica et al. Cluj University Press, Cluj-Napoca 121-131 (2006). (2006) Zbl1135.58009MR2250208
  7. Camci, Ç., Yayli, Y., Hacisalihoglu, H. H., 10.1016/j.jmaa.2007.12.056, J. Math. Anal. Appl. 342 1151-1159 (2008). (2008) Zbl1136.53043MR2445265DOI10.1016/j.jmaa.2007.12.056
  8. Călin, C., Crasmareanu, M., 10.1007/s00009-012-0217-1, Mediterr. J. Math. 10 1067-1077 (2013). (2013) Zbl1269.53020MR3045696DOI10.1007/s00009-012-0217-1
  9. Călin, C., Crasmareanu, M., 10.1017/S0004972712000809, Bull. Aust. Math. Soc. 88 128-142 (2013). (2013) MR3096876DOI10.1017/S0004972712000809
  10. Călin, C., Crasmareanu, M., Munteanu, M. I., 10.1016/j.jmaa.2012.04.031, J. Math. Anal. Appl. 394 400-407 (2012). (2012) Zbl1266.53056MR2926230DOI10.1016/j.jmaa.2012.04.031
  11. Cariñena, J. F., Lucas, J. de, 10.1142/S021988780900420X, Int. J. Geom. Methods Mod. Phys. 6 1235-1252 (2009). (2009) Zbl1186.81067MR2605548DOI10.1142/S021988780900420X
  12. Cho, J. T., Inoguchi, J.-I., Lee, J.-E., 10.1017/S0004972700040429, Bull. Aust. Math. Soc. 74 359-367 (2006). (2006) Zbl1106.53013MR2273746DOI10.1017/S0004972700040429
  13. Cho, J. T., Inoguchi, J.-I., Lee, J.-E., 10.1007/s10231-006-0026-x, Ann. Mat. Pura Appl. (4) 186 685-701 (2007). (2007) Zbl1141.53060MR2317785DOI10.1007/s10231-006-0026-x
  14. Cho, J. T., Lee, J.-E., 10.1017/S0004972708000737, Bull. Aust. Math. Soc. 78 383-396 (2008). (2008) Zbl1158.53062MR2472274DOI10.1017/S0004972708000737
  15. Fastenakels, J., Munteanu, M. I., Veken, J. Van Der, 10.1007/s10114-011-8428-0, Acta Math. Sin., Engl. Ser. 27 747-756 (2011). (2011) MR2776411DOI10.1007/s10114-011-8428-0
  16. Fetcu, D., 10.4134/JKMS.2008.45.2.393, J. Korean Math. Soc. 45 393-404 (2008). (2008) Zbl1152.53049MR2389544DOI10.4134/JKMS.2008.45.2.393
  17. Inoguchi, J.-I., 10.4064/cm100-2-2, Colloq. Math. 100 163-179 (2004). (2004) Zbl1076.53065MR2107514DOI10.4064/cm100-2-2
  18. Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk. J. Math. 28 153-163 (2004). (2004) Zbl1081.53003MR2062560
  19. Lee, H., 10.1007/s10711-010-9539-y, Geom. Dedicata 151 373-386 (2011). (2011) Zbl1211.53010MR2780757DOI10.1007/s10711-010-9539-y
  20. Lee, J.-E., 10.1017/S0004972709000872, Bull. Aust. Math. Soc. 81 156-164 (2010). (2010) Zbl1185.53048MR2584930DOI10.1017/S0004972709000872
  21. Ou, Y.-L., Wang, Z.-P., 10.1016/j.geomphys.2011.04.008, J. Geom. Phys. 61 1845-1853 (2011). (2011) Zbl1227.58004MR2822453DOI10.1016/j.geomphys.2011.04.008
  22. Piu, P., Profir, M. M., On the three-dimensional homogeneous S O ( 2 ) -isotropic Riemannian manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 57 361-376 (2011). (2011) Zbl1249.53017MR2933389
  23. Veken, J. Van Der, 10.1007/s00025-007-0282-0, Result. Math. 51 339-359 (2008). (2008) MR2400172DOI10.1007/s00025-007-0282-0
  24. Wełyczko, J., On Legrende curves in 3-dimensional normal almost contact metric manifolds, Soochow J. Math. 33 929-937 (2007). (2007) Zbl1144.53041MR2404614
  25. Wełyczko, J., 10.1007/s00025-009-0364-2, Result. Math. 54 377-387 (2009). (2009) Zbl1180.53080MR2534454DOI10.1007/s00025-009-0364-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.