On the global regularity of -dimensional generalized Boussinesq system
Applications of Mathematics (2015)
- Volume: 60, Issue: 2, page 109-133
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYamazaki, Kazuo. "On the global regularity of $N$-dimensional generalized Boussinesq system." Applications of Mathematics 60.2 (2015): 109-133. <http://eudml.org/doc/269885>.
@article{Yamazaki2015,
abstract = {We study the $N$-dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three.},
author = {Yamazaki, Kazuo},
journal = {Applications of Mathematics},
keywords = {Boussinesq system; global regularity; regularity criteria; Besov space; Boussinesq system; global regularity; regularity criteria; Besov space},
language = {eng},
number = {2},
pages = {109-133},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the global regularity of $N$-dimensional generalized Boussinesq system},
url = {http://eudml.org/doc/269885},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Yamazaki, Kazuo
TI - On the global regularity of $N$-dimensional generalized Boussinesq system
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 109
EP - 133
AB - We study the $N$-dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three.
LA - eng
KW - Boussinesq system; global regularity; regularity criteria; Besov space; Boussinesq system; global regularity; regularity criteria; Besov space
UR - http://eudml.org/doc/269885
ER -
References
top- Adhikari, D., Cao, C., Wu, J., 10.1016/j.jde.2010.03.021, J. Differ. Equations 249 (2010), 1078-1088. (2010) MR2652164DOI10.1016/j.jde.2010.03.021
- Adhikari, D., Cao, C., Wu, J., 10.1016/j.jde.2011.05.027, J. Differ. Equations 251 (2011), 1637-1655. (2011) MR2813893DOI10.1016/j.jde.2011.05.027
- Brezis, H., Wainger, S., 10.1080/03605308008820154, Commun. Partial Differ. Equations 5 (1980), 773-789. (1980) Zbl0437.35071MR0579997DOI10.1080/03605308008820154
- Cao, C., Titi, E. S., 10.1512/iumj.2008.57.3719, Indiana Univ. Math. J. 57 (2008), 2643-2661. (2008) Zbl1159.35053MR2482994DOI10.1512/iumj.2008.57.3719
- Cao, C., Titi, E. S., 10.1007/s00205-011-0439-6, Arch. Ration. Mech. Anal. 202 (2011), 919-932. (2011) Zbl1256.35051MR2854673DOI10.1007/s00205-011-0439-6
- Cao, C., Wu, J., 10.1016/j.jde.2009.09.020, J. Differ. Equations 248 (2010), 2263-2274. (2010) Zbl1190.35046MR2595721DOI10.1016/j.jde.2009.09.020
- Cao, C., Wu, J., 10.1007/s00205-013-0610-3, Arch. Ration. Mech. Anal. 208 (2013), 985-1004. (2013) Zbl1284.35140MR3048599DOI10.1007/s00205-013-0610-3
- Chae, D., 10.1016/j.aim.2005.05.001, Adv. Math. 203 (2006), 497-513. (2006) Zbl1100.35084MR2227730DOI10.1016/j.aim.2005.05.001
- Chae, D., Nam, H.-S., 10.1017/S0308210500026810, Proc. R. Soc. Edinb., Sect. A 127 (1997), 935-946. (1997) Zbl0882.35096MR1475638DOI10.1017/S0308210500026810
- Chemin, J.-Y., Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and Its Applications 14 Clarendon Press, Oxford (1998). (1998) Zbl0927.76002MR1688875
- Constantin, P., Vicol, V., 10.1007/s00039-012-0172-9, Geom. Funct. Anal. 22 (2012), 1289-1321. (2012) Zbl1256.35078MR2989434DOI10.1007/s00039-012-0172-9
- Córdoba, A., Córdoba, D., 10.1007/s00220-004-1055-1, Commun. Math. Phys. 249 (2004), 511-528. (2004) Zbl1309.76026MR2084005DOI10.1007/s00220-004-1055-1
- Danchin, R., Paicu, M., 10.1142/S0218202511005106, Math. Models Methods Appl. Sci. 21 (2011), 421-457. (2011) Zbl1223.35249MR2782720DOI10.1142/S0218202511005106
- Fan, J., Nakamura, G., Wang, H., 10.1016/j.na.2012.01.008, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 3436-3442. (2012) Zbl1243.35137MR2891178DOI10.1016/j.na.2012.01.008
- Hmidi, T., 10.2140/apde.2011.4.247, Anal. PDE 4 (2011), 247-284. (2011) MR2859855DOI10.2140/apde.2011.4.247
- Hmidi, T., Keraani, S., 10.1512/iumj.2009.58.3590, Indiana Univ. Math. J. 58 (2009), 1591-1618. (2009) Zbl1178.35303MR2542974DOI10.1512/iumj.2009.58.3590
- Hmidi, T., Keraani, S., Rousset, F., 10.1016/j.jde.2010.07.008, J. Differ. Equations 249 (2010), 2147-2174. (2010) Zbl1200.35228MR2718654DOI10.1016/j.jde.2010.07.008
- Hmidi, T., Keraani, S., Rousset, F., 10.1080/03605302.2010.518657, Commun. Partial Differ. Equations 36 (2011), 420-445. (2011) Zbl1284.76089MR2763332DOI10.1080/03605302.2010.518657
- Hou, T., Li, C., 10.3934/dcds.2005.12.1, Discrete Contin. Dyn. Syst. 12 (2005), 1-12. (2005) Zbl1274.76185MR2121245DOI10.3934/dcds.2005.12.1
- Kato, T., Ponce, G., 10.1002/cpa.3160410704, Commun. Pure Appl. Math. 41 (1988), 891-907. (1988) Zbl0671.35066MR0951744DOI10.1002/cpa.3160410704
- Kukavica, I., Ziane, M., 10.1063/1.2395919, J. Math. Phys. 48 065203, 10 pages (2007). (2007) Zbl1144.81373MR2337002DOI10.1063/1.2395919
- Majda, A., Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics 9 AMS, Providence; Courant Institute of Mathematical Sciences, New York (2003). (2003) Zbl1278.76004MR1965452
- Majda, A. J., Bertozzi, A. L., Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics 27 Cambridge University Press, Cambridge (2002). (2002) Zbl0983.76001MR1867882
- Miao, C., Zheng, X., 10.1007/s00220-013-1721-2, Commun. Math. Phys. 321 (2013), 33-67. (2013) Zbl1307.35233MR3089663DOI10.1007/s00220-013-1721-2
- Moffatt, H. K., Some remarks on topological fluid mechanics, An Introduction to the Geometry and Topology of Fluid Flows R. L. Ricca Proc. Pedag. Workshop, Cambridge, 2000. Kluwer Academic Publishers Dordrecht, NATO Sci. Ser. II, Math. Phys. Chem. 47 (2001), 3-10. (2001) Zbl1100.76500MR1999078
- Qiu, H., Du, Y., Yao, Z., 10.1080/00036811.2010.492505, Appl. Anal. 89 (2010), 1603-1613. (2010) MR2773338DOI10.1080/00036811.2010.492505
- Qiu, H., Du, Y., Yao, Z., 10.1016/j.na.2010.04.021, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 806-815. (2010) Zbl1193.76025MR2653751DOI10.1016/j.na.2010.04.021
- Vasseur, A., 10.1007/s10492-009-0003-y, Appl. Math., Praha 54 (2009), 47-52. (2009) Zbl1212.35354MR2476020DOI10.1007/s10492-009-0003-y
- Wu, J., 10.1016/j.jde.2003.07.007, J. Differ. Equations 195 (2003), 284-312. (2003) MR2016814DOI10.1016/j.jde.2003.07.007
- Wu, J., 10.1007/s00021-009-0017-y, J. Math. Fluid Mech. 13 (2011), 295-305. (2011) Zbl1270.35371MR2805867DOI10.1007/s00021-009-0017-y
- Xiang, Z., 10.1002/mma.1367, Math. Methods Appl. Sci. 34 (2011), 360-372. (2011) Zbl1205.35235MR2779955DOI10.1002/mma.1367
- Xiaofeng, L., Wang, M., Zhang, Z., 10.1007/s00021-008-0286-x, J. Math. Fluid. Mech. 12 (2010), 280-292. (2010) Zbl1195.76136MR2645152DOI10.1007/s00021-008-0286-x
- Xu, X., 10.1016/j.na.2009.07.008, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 677-681. (2010) Zbl1177.76024MR2579335DOI10.1016/j.na.2009.07.008
- Yamazaki, K., 10.1016/j.na.2012.04.010, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4950-4956. (2012) Zbl1242.35075MR2927558DOI10.1016/j.na.2012.04.010
- Yamazaki, K., 10.1063/1.4773833, J. Math. Phys. 54 011502, 16 pages (2013). (2013) Zbl1290.35191MR3059861DOI10.1063/1.4773833
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.