Portfolio optimization for pension plans under hybrid stochastic and local volatility
Sung-Jin Yang; Jeong-Hoon Kim; Min-Ku Lee
Applications of Mathematics (2015)
- Volume: 60, Issue: 2, page 197-215
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYang, Sung-Jin, Kim, Jeong-Hoon, and Lee, Min-Ku. "Portfolio optimization for pension plans under hybrid stochastic and local volatility." Applications of Mathematics 60.2 (2015): 197-215. <http://eudml.org/doc/269889>.
@article{Yang2015,
abstract = {Based upon an observation that it is too restrictive to assume a definite correlation of the underlying asset price and its volatility, we use a hybrid model of the constant elasticity of variance and stochastic volatility to study a portfolio optimization problem for pension plans. By using asymptotic analysis, we derive a correction to the optimal strategy for the constant elasticity of variance model and subsequently the fine structure of the corrected optimal strategy is revealed. The result is a generalization of Merton's strategy in terms of the stochastic volatility and the elasticity of variance.},
author = {Yang, Sung-Jin, Kim, Jeong-Hoon, Lee, Min-Ku},
journal = {Applications of Mathematics},
keywords = {pension plan; portfolio optimization; constant elasticity of variance; stochastic volatility; asymptotic analysis; pension plan; portfolio optimization; constant elasticity of variance; stochastic volatility; asymptotic analysis},
language = {eng},
number = {2},
pages = {197-215},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Portfolio optimization for pension plans under hybrid stochastic and local volatility},
url = {http://eudml.org/doc/269889},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Yang, Sung-Jin
AU - Kim, Jeong-Hoon
AU - Lee, Min-Ku
TI - Portfolio optimization for pension plans under hybrid stochastic and local volatility
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 197
EP - 215
AB - Based upon an observation that it is too restrictive to assume a definite correlation of the underlying asset price and its volatility, we use a hybrid model of the constant elasticity of variance and stochastic volatility to study a portfolio optimization problem for pension plans. By using asymptotic analysis, we derive a correction to the optimal strategy for the constant elasticity of variance model and subsequently the fine structure of the corrected optimal strategy is revealed. The result is a generalization of Merton's strategy in terms of the stochastic volatility and the elasticity of variance.
LA - eng
KW - pension plan; portfolio optimization; constant elasticity of variance; stochastic volatility; asymptotic analysis; pension plan; portfolio optimization; constant elasticity of variance; stochastic volatility; asymptotic analysis
UR - http://eudml.org/doc/269889
ER -
References
top- Asch, M., Kohler, W., Papanicolaou, G., Postel, M., White, B., 10.1137/1033136, SIAM Rev. 33 519-625 (1991). (1991) Zbl0736.60055MR1137513DOI10.1137/1033136
- Beckers, S., 10.1111/j.1540-6261.1980.tb03490.x, Journal of Finance 35 661-673 (1980). (1980) DOI10.1111/j.1540-6261.1980.tb03490.x
- Boulier, J.-F., Huang, S., Taillard, G., 10.1016/S0167-6687(00)00073-1, Insur. Math. Econ. 28 173-189 (2001). (2001) Zbl0976.91034MR1835085DOI10.1016/S0167-6687(00)00073-1
- Boyle, P. P., Tian, Y. S., 10.2307/2676280, Journal of Financial and Quantitative Analysis 34 241-264 (1999). (1999) DOI10.2307/2676280
- Cerrai, S., 10.1214/08-AAP560, Ann. Appl. Probab. 19 899-948 (2009). (2009) Zbl1191.60076MR2537194DOI10.1214/08-AAP560
- Choi, S.-Y., Fouque, J.-P., Kim, J.-H., 10.1080/14697688.2013.780209, Quant. Finance 13 1157-1165 (2013). (2013) Zbl1281.91155MR3175894DOI10.1080/14697688.2013.780209
- Cox, J. C., 10.3905/jpm.1996.015, The Journal of Portfolio Management 23 15-17 (1996). (1996) DOI10.3905/jpm.1996.015
- Cox, J. C., Huang, C.-F., 10.1016/0022-0531(89)90067-7, J. Econ. Theory 49 33-83 (1989). (1989) Zbl0678.90011MR1024460DOI10.1016/0022-0531(89)90067-7
- Cox, J. C., Ross, S., 10.1016/0304-405X(76)90023-4, Journal of Financial Economics 3 145-166 (1976). (1976) DOI10.1016/0304-405X(76)90023-4
- Davydov, D., Linetsky, V., 10.1287/mnsc.47.7.949.9804, Manage. Sci. 47 949-965 (2001). (2001) DOI10.1287/mnsc.47.7.949.9804
- Deelstra, G., Grasselli, M., Koehl, P.-F., 10.1016/j.jedc.2003.10.003, J. Econ. Dyn. Control 28 2239-2260 (2004). (2004) Zbl1202.91124MR2078825DOI10.1016/j.jedc.2003.10.003
- Devolder, P., Princep, M. Bosch, Fabian, I. Dominguez, 10.1016/S0167-6687(03)00136-7, Insur. Math. Econ. 33 227-238 (2003). (2003) MR2039284DOI10.1016/S0167-6687(03)00136-7
- Fleming, W. H., Soner, H. M., Controlled Markov Processes and Viscosity Solutions, Stochastic Modelling and Applied Probability 25 Springer, New York (2006). (2006) Zbl1105.60005MR2179357
- Fouque, J.-P, Papanicolaou, G., Sircar, K. R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press Cambridge (2000). (2000) Zbl0954.91025MR1768877
- Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K., Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives, Cambridge University Press Cambridge (2011). (2011) Zbl1248.91003MR2867464
- Fredholm, I., 10.1007/BF02421317, Acta Math. 27 365-390 (1903), French. (1903) MR1554993DOI10.1007/BF02421317
- Gao, J., 10.1016/j.insmatheco.2009.01.005, Insur. Math. Econ. 44 479-490 (2009). (2009) Zbl1162.91411MR2519092DOI10.1016/j.insmatheco.2009.01.005
- Ghysels, E., Harvey, A., Renault, E., Stochastic volatility, Statistical Methods in Finance Handbook of Statistics 14 North-Holland, Amsterdam (1996). (1996) MR1602124
- Haberman, S., Vigna, E., 10.1016/S0167-6687(02)00128-2, Insur. Math. Econ. 31 35-69 (2002). (2002) Zbl1039.91025MR1956510DOI10.1016/S0167-6687(02)00128-2
- Harvey, C. R., 10.1016/S0927-5398(01)00036-6, Journal of Empirical Finance 8 573-637 (2001). (2001) DOI10.1016/S0927-5398(01)00036-6
- Jackwerth, J. C., Rubinstein, M., 10.1111/j.1540-6261.1996.tb05219.x, Journal of Finance 51 1611-1631 (1996). (1996) DOI10.1111/j.1540-6261.1996.tb05219.x
- Khas'minskii, R. Z., On stochastic processes defined by differential equations with a small parameter, Theory Probab. Appl. 11 211-228 (1966), translation from Teor. Veroyatn. Primen. 11 240-259 (1966), Russian. (1966) MR0203788
- Kim, J.-H., 10.1016/j.spa.2004.05.004, Stochastic Processes Appl. 114 161-174 (2004). (2004) Zbl1079.60055MR2094151DOI10.1016/j.spa.2004.05.004
- Merton, R. C., 10.1016/0022-0531(71)90038-X, J. Econ. Theory 3 373-413 (1971). (1971) Zbl1011.91502MR0456373DOI10.1016/0022-0531(71)90038-X
- Noh, E.-J., Kim, J.-H., 10.1016/j.jmaa.2010.09.055, J. Math. Anal. Appl. 375 510-522 (2011). (2011) Zbl1202.91302MR2735541DOI10.1016/j.jmaa.2010.09.055
- Øksendal, B., Stochastic Differential Equations. An Introduction with Applications, Universitext Springer, Berlin (2003). (2003) Zbl1025.60026MR2001996
- Papanicolaou, G. C., Stroock, D. W., Varadhan, S. R. S., Martingale approach to some limit theorems, Proc. Conf. Durham, 1976 Duke Univ. Math. Ser., Vol. III, Duke Univ., Durham (1977). (1977) Zbl0387.60067MR0461684
- Rubinstein, M., Nonparametric tests of alternative option pricing models using CBOE reported trades, Journal of Finance 40 455-480 (1985). (1985)
- Xiao, J., Hong, Z., Qin, C., 10.1016/j.insmatheco.2006.04.007, Insur. Math. Econ. 40 302-310 (2007). (2007) Zbl1141.91473MR2286948DOI10.1016/j.insmatheco.2006.04.007
- Yuen, K. C., Yang, H., Chu, K. L., 10.1017/S1357321700002233, British Actuarial Journal 7 275-292 (2001). (2001) DOI10.1017/S1357321700002233
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.