# On continuous solutions of a functional equation

Annales Polonici Mathematici (1997)

- Volume: 65, Issue: 2, page 151-156
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topKazimierz Dankiewicz. "On continuous solutions of a functional equation." Annales Polonici Mathematici 65.2 (1997): 151-156. <http://eudml.org/doc/269948>.

@article{KazimierzDankiewicz1997,

abstract = {This paper discusses continuous solutions of the functional equation φ[f(x)] = g(x,φ(x)) in topological spaces.},

author = {Kazimierz Dankiewicz},

journal = {Annales Polonici Mathematici},

keywords = {continuous solution; functional equation; extension; topological spaces},

language = {eng},

number = {2},

pages = {151-156},

title = {On continuous solutions of a functional equation},

url = {http://eudml.org/doc/269948},

volume = {65},

year = {1997},

}

TY - JOUR

AU - Kazimierz Dankiewicz

TI - On continuous solutions of a functional equation

JO - Annales Polonici Mathematici

PY - 1997

VL - 65

IS - 2

SP - 151

EP - 156

AB - This paper discusses continuous solutions of the functional equation φ[f(x)] = g(x,φ(x)) in topological spaces.

LA - eng

KW - continuous solution; functional equation; extension; topological spaces

UR - http://eudml.org/doc/269948

ER -

## References

top- [1] K. Baron, On extending solutions of a functional equation, Aequationes Math. 13 (1975), 285-288. Zbl0344.39006
- [2] K. Baron, Functional equations of infinite order, Prace Nauk. Uniw. Śląsk. 265 (1978).
- [3] M. Kuczma, General solution of the functional equation φ[f(x)]=G(x,φ(x)), Ann. Polon. Math. 9 (1960), 275-284.
- [4] M. Kuczma, Functional Equations in a Single Variable, Monograf. Mat. 46, PWN, Warszawa, 1968.
- [5] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, 1990. Zbl0703.39005
- [6] M. Sablik, Differentiable solutions of functional equations in Banach spaces, Ann. Math. Sil. 7 (1993), 17-55. Zbl0805.39011
- [7] W. Smajdor, On continuous solutions of the Schröder equation, Ann. Polon. Math. 32 (1976), 111-118. Zbl0344.39004

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.