PM functions, their characteristic intervals and iterative roots

Weinian Zhang

Annales Polonici Mathematici (1997)

  • Volume: 65, Issue: 2, page 119-128
  • ISSN: 0066-2216

Abstract

top
The concept of characteristic interval for piecewise monotone functions is introduced and used in the study of their iterative roots on a closed interval.

How to cite

top

Weinian Zhang. "PM functions, their characteristic intervals and iterative roots." Annales Polonici Mathematici 65.2 (1997): 119-128. <http://eudml.org/doc/269950>.

@article{WeinianZhang1997,
abstract = {The concept of characteristic interval for piecewise monotone functions is introduced and used in the study of their iterative roots on a closed interval.},
author = {Weinian Zhang},
journal = {Annales Polonici Mathematici},
keywords = {iterative root; piecewise monotone function; characteristic interval; continuous iterative roots},
language = {eng},
number = {2},
pages = {119-128},
title = {PM functions, their characteristic intervals and iterative roots},
url = {http://eudml.org/doc/269950},
volume = {65},
year = {1997},
}

TY - JOUR
AU - Weinian Zhang
TI - PM functions, their characteristic intervals and iterative roots
JO - Annales Polonici Mathematici
PY - 1997
VL - 65
IS - 2
SP - 119
EP - 128
AB - The concept of characteristic interval for piecewise monotone functions is introduced and used in the study of their iterative roots on a closed interval.
LA - eng
KW - iterative root; piecewise monotone function; characteristic interval; continuous iterative roots
UR - http://eudml.org/doc/269950
ER -

References

top
  1. [1] N. H. Abel, Oeuvres Complètes, t. II, Christiania, 1881, 36-39. 
  2. [2] U. T. Bödewadt, Zur Iteration reeller Funktionen, Math. Z. 49 (1944), 497-516. Zbl0028.35103
  3. [3] J. M. Dubbey, The Mathematical Work of Charles Babbage, Cambridge Univ. Press, 1978. Zbl0376.01002
  4. [4] M. K. Fort Jr., The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc. 6 (1955), 960-967. Zbl0066.41306
  5. [5] H. Kneser, Reelle analytische Lösungen der Gleichung φ ( φ ( x ) ) = e x und verwandter Funktionalgleichungen, J. Reine Angew. Math. 187 (1950), 56-67. 
  6. [6] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Ecole Norm. Sup. (3) 1 (1884), Suppl., 3-41. 
  7. [7] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, PWN, Warszawa, 1968. 
  8. [8] M. Kuczma, Fractional iteration of differentiable functions, Ann. Polon. Math. 22 (1969/70), 217-227. Zbl0185.29403
  9. [9] M. Kuczma and A. Smajdor, Fractional iteration in the class of convex functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 717-720. 
  10. [10] R. E. Rice, B. Schweizer and A. Sklar, When is f(f(z)) = az²+bz+c?, Amer. Math. Monthly 87 (1980), 252-263. Zbl0441.30033
  11. [11] J. Zhang and L. Yang, Discussion on iterative roots of piecewise monotone functions, Acta Math. Sinica 26 (1983), 398-412 (in Chinese). Zbl0529.39006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.