Banach algebra of the Fourier multipliers on weighted Banach function spaces

Alexei Karlovich

Concrete Operators (2015)

  • Volume: 2, Issue: 1, page 27-36, electronic only
  • ISSN: 2299-3282

Abstract

top
Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.

How to cite

top

Alexei Karlovich. "Banach algebra of the Fourier multipliers on weighted Banach function spaces." Concrete Operators 2.1 (2015): 27-36, electronic only. <http://eudml.org/doc/269960>.

@article{AlexeiKarlovich2015,
abstract = {Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.},
author = {Alexei Karlovich},
journal = {Concrete Operators},
keywords = {Fourier convolution operator; Fourier multiplier; Banach function space; Cauchy singular integral operator; rearrangement-invariant space; variable Lebesgue space; Muckenhoupt-type weight; Cauchy singular integral operator; rearrangement invariant space},
language = {eng},
number = {1},
pages = {27-36, electronic only},
title = {Banach algebra of the Fourier multipliers on weighted Banach function spaces},
url = {http://eudml.org/doc/269960},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Alexei Karlovich
TI - Banach algebra of the Fourier multipliers on weighted Banach function spaces
JO - Concrete Operators
PY - 2015
VL - 2
IS - 1
SP - 27
EP - 36, electronic only
AB - Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.
LA - eng
KW - Fourier convolution operator; Fourier multiplier; Banach function space; Cauchy singular integral operator; rearrangement-invariant space; variable Lebesgue space; Muckenhoupt-type weight; Cauchy singular integral operator; rearrangement invariant space
UR - http://eudml.org/doc/269960
ER -

References

top
  1. [1] Bennett C., Sharpley R., Interpolation of Operators. Pure and Applied Mathematics, 129. Academic Press, Boston, 1988. DOI: 10.1016/S0079-8169(08)60845-4 [Crossref] Zbl0647.46057
  2. [2] Berezhnoi E.I., Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127, 1999, 79-87. DOI: 10.1090/S0002-9939-99-04998-9 [Crossref] Zbl0918.42011
  3. [3] Berkson E., Gillespie T.A., Multipliers for weighted Lp-spaces, transference, and the q-variation of functions. Bull. Sci. Math., 1998, 122, 427–454. DOI: 10.1016/S0007-4497(98)80002-X [Crossref] Zbl0935.42005
  4. [4] Böttcher A., Karlovich Yu. I., Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Progress in Mathematics (Boston, Mass.) 154. Birkhäuser, Basel, 1997. DOI: 10.1007/978-3-0348-8922-3 [Crossref] Zbl0889.47001
  5. [5] Böttcher A., Karlovich Yu.I., Spitkovsky I.M., Convolution Operators and Factorization of Almost Periodic Matrix Functions. Operator Theory: Advances and Applications, 131. Birkhäuser, Basel, 2002. DOI: 10.1007/978-3-0348-8152-4 [Crossref] Zbl1011.47001
  6. [6] Böttcher A., Silbermann B., Analysis of Toeplitz Operators. 2nd edn. Springer, Berlin, 2006. DOI: 10.1007/3-540-32436-4 [Crossref] Zbl1098.47002
  7. [7] Cruz-Uribe D., Diening L., Hästö P., Themaximal operator on weighted variable Lebesgue spaces. Frac. Calc. Appl. Anal., 14, 2011, 361–374. DOI: 10.2478/s13540-011-0023-7 [Crossref] Zbl1273.42018
  8. [8] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces. Birkhäuser, Basel, 2013. DOI: 10.1007/978-3-0348-0548-3 [Crossref] Zbl1268.46002
  9. [9] Cruz-Uribe D., Fiorenza A., Neugebauer C.J., Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl., 2012, 394, 744–760. DOI: 10.1016/j.jmaa.2012.04.044 [Crossref] Zbl1298.42021
  10. [10] Curbera G.P., García-Cuerva J., Martell J.M., Pérez C., Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203, 2006, 256–318. DOI: 10.1016/j.aim.2005.04.009 [Crossref] Zbl1098.42017
  11. [11] Diening L., Harjulehto P., Hästö P., Ružicka M., Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017. Springer, Berlin, 2011. DOI: 10.1007/978-3-642-18363-8 [Crossref] Zbl1222.46002
  12. [12] Duduchava R., Integral Equations with Fixed Singularities. Teubner Verlagsgesellschaft, Leipzig, 1979. Zbl0429.45002
  13. [13] Fremlin D.H., Measure Theory. Vol. 2: Broad Foundations, Torres Fremlin, Colchester, 2003. 
  14. [14] Grafakos L., Classical Fourier Analysis. 3rd ed. Graduate Texts in Mathematics, 249. Springer, New York, NY, 2014. DOI: 10.1007/978-1-4939-1194-3 [Crossref] Zbl1304.42001
  15. [15] Grafakos L., Modern Fourier Analysis. 3rd ed. Graduate Texts in Mathematics, 250. Springer, New York, NY, 2014. DOI: 10.1007/978-1-4939-1230-8 [Crossref] Zbl1304.42002
  16. [16] Hunt R.,Muckenhoupt B., Wheeden R., Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc., 1973, 176, 227–251. DOI: 10.1090/S0002-9947-1973-0312139-8 [Crossref] Zbl0262.44004
  17. [17] Karlovich A.Yu., Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights. J. Oper. Theory, 2002, 47, 303–323. Zbl1019.47051
  18. [18] Karlovich A.Yu., Spitkovsky I.M., The Cauchy singular integral operator on weighted variable Lebesgue spaces. In Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, Birkhäuser, Basel. Operator Theory: Advances and Applications, 2014, 236, pp. 275–291. DOI: 10.1007/978 − 3 − 0348 − 0648 − 017 [Crossref] Zbl1317.42007
  19. [19] Lacey M., Carleson’s theorem: proof, complements, variations. Publ. Mat., 2004, 48, 251–307. DOI: 10.5565/PUBLMAT4820401 [Crossref] Zbl1066.42003
  20. [20] Mastylo M., Pérez C., The Hardy-Littlewood maximal type operators between Banach function spaces. Indiana Univ. Math. J., 61, 2012, 883–900. DOI: 10.1512/iumj.2012.61.4708 [Crossref] Zbl1273.42020
  21. [21] Roch S., Santos P.A., Silbermann B., Non-Commutative Gelfand Theories. A Tool-Kit for Operator Theorists and Numerical Analysts. Universitext. Springer-Verlag London, London, 2011. DOI: 10.1007/978-0-85729-183-7 [Crossref][WoS] Zbl1209.47002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.