Banach algebra of the Fourier multipliers on weighted Banach function spaces
Concrete Operators (2015)
- Volume: 2, Issue: 1, page 27-36, electronic only
- ISSN: 2299-3282
Access Full Article
topAbstract
topHow to cite
topAlexei Karlovich. "Banach algebra of the Fourier multipliers on weighted Banach function spaces." Concrete Operators 2.1 (2015): 27-36, electronic only. <http://eudml.org/doc/269960>.
@article{AlexeiKarlovich2015,
abstract = {Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.},
author = {Alexei Karlovich},
journal = {Concrete Operators},
keywords = {Fourier convolution operator; Fourier multiplier; Banach function space; Cauchy singular integral
operator; rearrangement-invariant space; variable Lebesgue space; Muckenhoupt-type weight; Cauchy singular integral operator; rearrangement invariant space},
language = {eng},
number = {1},
pages = {27-36, electronic only},
title = {Banach algebra of the Fourier multipliers on weighted Banach function spaces},
url = {http://eudml.org/doc/269960},
volume = {2},
year = {2015},
}
TY - JOUR
AU - Alexei Karlovich
TI - Banach algebra of the Fourier multipliers on weighted Banach function spaces
JO - Concrete Operators
PY - 2015
VL - 2
IS - 1
SP - 27
EP - 36, electronic only
AB - Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.
LA - eng
KW - Fourier convolution operator; Fourier multiplier; Banach function space; Cauchy singular integral
operator; rearrangement-invariant space; variable Lebesgue space; Muckenhoupt-type weight; Cauchy singular integral operator; rearrangement invariant space
UR - http://eudml.org/doc/269960
ER -
References
top- [1] Bennett C., Sharpley R., Interpolation of Operators. Pure and Applied Mathematics, 129. Academic Press, Boston, 1988. DOI: 10.1016/S0079-8169(08)60845-4 [Crossref] Zbl0647.46057
- [2] Berezhnoi E.I., Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127, 1999, 79-87. DOI: 10.1090/S0002-9939-99-04998-9 [Crossref] Zbl0918.42011
- [3] Berkson E., Gillespie T.A., Multipliers for weighted Lp-spaces, transference, and the q-variation of functions. Bull. Sci. Math., 1998, 122, 427–454. DOI: 10.1016/S0007-4497(98)80002-X [Crossref] Zbl0935.42005
- [4] Böttcher A., Karlovich Yu. I., Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Progress in Mathematics (Boston, Mass.) 154. Birkhäuser, Basel, 1997. DOI: 10.1007/978-3-0348-8922-3 [Crossref] Zbl0889.47001
- [5] Böttcher A., Karlovich Yu.I., Spitkovsky I.M., Convolution Operators and Factorization of Almost Periodic Matrix Functions. Operator Theory: Advances and Applications, 131. Birkhäuser, Basel, 2002. DOI: 10.1007/978-3-0348-8152-4 [Crossref] Zbl1011.47001
- [6] Böttcher A., Silbermann B., Analysis of Toeplitz Operators. 2nd edn. Springer, Berlin, 2006. DOI: 10.1007/3-540-32436-4 [Crossref] Zbl1098.47002
- [7] Cruz-Uribe D., Diening L., Hästö P., Themaximal operator on weighted variable Lebesgue spaces. Frac. Calc. Appl. Anal., 14, 2011, 361–374. DOI: 10.2478/s13540-011-0023-7 [Crossref] Zbl1273.42018
- [8] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces. Birkhäuser, Basel, 2013. DOI: 10.1007/978-3-0348-0548-3 [Crossref] Zbl1268.46002
- [9] Cruz-Uribe D., Fiorenza A., Neugebauer C.J., Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl., 2012, 394, 744–760. DOI: 10.1016/j.jmaa.2012.04.044 [Crossref] Zbl1298.42021
- [10] Curbera G.P., García-Cuerva J., Martell J.M., Pérez C., Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203, 2006, 256–318. DOI: 10.1016/j.aim.2005.04.009 [Crossref] Zbl1098.42017
- [11] Diening L., Harjulehto P., Hästö P., Ružicka M., Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017. Springer, Berlin, 2011. DOI: 10.1007/978-3-642-18363-8 [Crossref] Zbl1222.46002
- [12] Duduchava R., Integral Equations with Fixed Singularities. Teubner Verlagsgesellschaft, Leipzig, 1979. Zbl0429.45002
- [13] Fremlin D.H., Measure Theory. Vol. 2: Broad Foundations, Torres Fremlin, Colchester, 2003.
- [14] Grafakos L., Classical Fourier Analysis. 3rd ed. Graduate Texts in Mathematics, 249. Springer, New York, NY, 2014. DOI: 10.1007/978-1-4939-1194-3 [Crossref] Zbl1304.42001
- [15] Grafakos L., Modern Fourier Analysis. 3rd ed. Graduate Texts in Mathematics, 250. Springer, New York, NY, 2014. DOI: 10.1007/978-1-4939-1230-8 [Crossref] Zbl1304.42002
- [16] Hunt R.,Muckenhoupt B., Wheeden R., Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc., 1973, 176, 227–251. DOI: 10.1090/S0002-9947-1973-0312139-8 [Crossref] Zbl0262.44004
- [17] Karlovich A.Yu., Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights. J. Oper. Theory, 2002, 47, 303–323. Zbl1019.47051
- [18] Karlovich A.Yu., Spitkovsky I.M., The Cauchy singular integral operator on weighted variable Lebesgue spaces. In Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, Birkhäuser, Basel. Operator Theory: Advances and Applications, 2014, 236, pp. 275–291. DOI: 10.1007/978 − 3 − 0348 − 0648 − 017 [Crossref] Zbl1317.42007
- [19] Lacey M., Carleson’s theorem: proof, complements, variations. Publ. Mat., 2004, 48, 251–307. DOI: 10.5565/PUBLMAT4820401 [Crossref] Zbl1066.42003
- [20] Mastylo M., Pérez C., The Hardy-Littlewood maximal type operators between Banach function spaces. Indiana Univ. Math. J., 61, 2012, 883–900. DOI: 10.1512/iumj.2012.61.4708 [Crossref] Zbl1273.42020
- [21] Roch S., Santos P.A., Silbermann B., Non-Commutative Gelfand Theories. A Tool-Kit for Operator Theorists and Numerical Analysts. Universitext. Springer-Verlag London, London, 2011. DOI: 10.1007/978-0-85729-183-7 [Crossref][WoS] Zbl1209.47002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.