On the first secondary invariant of Molino's central sheaf
Annales Polonici Mathematici (1996)
- Volume: 64, Issue: 3, page 253-265
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. A. Álvarez López, A finiteness theorem for the spectral sequence of a Riemannian foliation, Illinois J. Math. 33 (1989), 79-92. Zbl0644.57014
- [2] J. A. Álvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194. Zbl0759.57017
- [3] J. A. Álvarez López, Morse inequalities for pseudogroups of local isometries, J. Differential Geom. 37 (1993), 603-638. Zbl0783.53023
- [4] Y. Carrière, Flots riemanniens, Astérisque 116 (1984), 31-52.
- [5] D. Domínguez, Finiteness and tenseness theorems for Riemannian foliations, preprint, 1994.
- [6] A. El Kacimi-Alaoui et G. Hector, Décomposition de Hodge sur l'espace des feuilles d'un feuilletage riemannien, C. R. Acad. Sci. Paris 298 (1984), 289-292. Zbl0569.57015
- [7] A. El Kacimi-Alaoui, G. Hector et V. Sergiescu, La cohomologie basique d'un feuilletage Riemannien est de dimension finie, Math. Z. 188 (1985), 593-599. Zbl0536.57013
- [8] A. El Kacimi-Alaoui and M. Nicolau, On the topological invariance of the basic cohomology, Math. Ann. 293 (1993), 627-634. Zbl0793.57016
- [9] A. Haefliger, Some remarks on foliations with minimal leaves, J. Differential Geom. 15 (1980), 269-384. Zbl0444.57016
- [10] A. Haefliger, Pseudogroups of local isometries, in: Differential Geometry, Proc. Conf. Santiago de Compostela 1984, L. A. Cordero (ed.), Pitman, 1984, 174-197.
- [11] A. Haefliger, Leaf Closures in Riemannian Foliations, in: A Fête on Topology, Academic Press, New York, 1988, 3-32.
- [12] F. Kamber and P. Tondeur, Foliated Bundles and Characteristic Classes, Lecture Notes in Math. 494, Springer, 1975. Zbl0308.57011
- [13] F. Kamber and P. Tondeur, De Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), 415-431. Zbl0637.53043
- [14] E. Macías and E. Sanmartín, Minimal foliations on Lie groups, Indag. Math. 3 (1992), 41-46. Zbl0766.53021
- [15] X. Masa, Duality and minimality in Riemannian foliations, Comment. Math. Helv. 67 (1992), 17-27. Zbl0778.53029
- [16] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Proc. A1 85 (1982), 45-76. Zbl0516.57016
- [17] P. Molino, Riemannian Foliations, Progr. Math. 73, Birkhäuser, Boston, 1988.
- [18] P. Molino et V. Sergiescu, Deux remarques sur les flots riemanniens, Manuscripta Math. 51 (1985), 145-161. Zbl0585.53026
- [19] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132. Zbl0122.16604
- [20] H. Rummler, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, Comment. Math. Helv. 54 (1979), 224-239. Zbl0409.57026
- [21] E. Salem, Riemannian foliations and pseudogroups of isometries, in: Riemannian Foliations, Progr. Math. 73, Birkhäuser, Boston, 1988.
- [22] V. Sergiescu, Cohomologie basique et dualité des feuilletages riemanniens, Ann. Inst. Fourier (Grenoble) 35 (1985), 137-158. Zbl0563.57012
- [23] A. Verona, A de Rham type theorem, Proc. Amer. Math. Soc. 104 (1988), 300-302. Zbl0667.57021