On the first secondary invariant of Molino's central sheaf

Jesús A. Álvarez López

Annales Polonici Mathematici (1996)

  • Volume: 64, Issue: 3, page 253-265
  • ISSN: 0066-2216

Abstract

top
For a Riemannian foliation on a closed manifold, the first secondary invariant of Molino's central sheaf is an obstruction to tautness. Another obstruction is the class defined by the basic component of the mean curvature with respect to some metric. Both obstructions are proved to be the same up to a constant, and other geometric properties are also proved to be equivalent to tautness.

How to cite

top

Jesús A. Álvarez López. "On the first secondary invariant of Molino's central sheaf." Annales Polonici Mathematici 64.3 (1996): 253-265. <http://eudml.org/doc/269961>.

@article{JesúsA1996,
abstract = {For a Riemannian foliation on a closed manifold, the first secondary invariant of Molino's central sheaf is an obstruction to tautness. Another obstruction is the class defined by the basic component of the mean curvature with respect to some metric. Both obstructions are proved to be the same up to a constant, and other geometric properties are also proved to be equivalent to tautness.},
author = {Jesús A. Álvarez López},
journal = {Annales Polonici Mathematici},
keywords = {foliation; taut; Riemannian foliation; tautness; central sheaf},
language = {eng},
number = {3},
pages = {253-265},
title = {On the first secondary invariant of Molino's central sheaf},
url = {http://eudml.org/doc/269961},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Jesús A. Álvarez López
TI - On the first secondary invariant of Molino's central sheaf
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 3
SP - 253
EP - 265
AB - For a Riemannian foliation on a closed manifold, the first secondary invariant of Molino's central sheaf is an obstruction to tautness. Another obstruction is the class defined by the basic component of the mean curvature with respect to some metric. Both obstructions are proved to be the same up to a constant, and other geometric properties are also proved to be equivalent to tautness.
LA - eng
KW - foliation; taut; Riemannian foliation; tautness; central sheaf
UR - http://eudml.org/doc/269961
ER -

References

top
  1. [1] J. A. Álvarez López, A finiteness theorem for the spectral sequence of a Riemannian foliation, Illinois J. Math. 33 (1989), 79-92. Zbl0644.57014
  2. [2] J. A. Álvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194. Zbl0759.57017
  3. [3] J. A. Álvarez López, Morse inequalities for pseudogroups of local isometries, J. Differential Geom. 37 (1993), 603-638. Zbl0783.53023
  4. [4] Y. Carrière, Flots riemanniens, Astérisque 116 (1984), 31-52. 
  5. [5] D. Domínguez, Finiteness and tenseness theorems for Riemannian foliations, preprint, 1994. 
  6. [6] A. El Kacimi-Alaoui et G. Hector, Décomposition de Hodge sur l'espace des feuilles d'un feuilletage riemannien, C. R. Acad. Sci. Paris 298 (1984), 289-292. Zbl0569.57015
  7. [7] A. El Kacimi-Alaoui, G. Hector et V. Sergiescu, La cohomologie basique d'un feuilletage Riemannien est de dimension finie, Math. Z. 188 (1985), 593-599. Zbl0536.57013
  8. [8] A. El Kacimi-Alaoui and M. Nicolau, On the topological invariance of the basic cohomology, Math. Ann. 293 (1993), 627-634. Zbl0793.57016
  9. [9] A. Haefliger, Some remarks on foliations with minimal leaves, J. Differential Geom. 15 (1980), 269-384. Zbl0444.57016
  10. [10] A. Haefliger, Pseudogroups of local isometries, in: Differential Geometry, Proc. Conf. Santiago de Compostela 1984, L. A. Cordero (ed.), Pitman, 1984, 174-197. 
  11. [11] A. Haefliger, Leaf Closures in Riemannian Foliations, in: A Fête on Topology, Academic Press, New York, 1988, 3-32. 
  12. [12] F. Kamber and P. Tondeur, Foliated Bundles and Characteristic Classes, Lecture Notes in Math. 494, Springer, 1975. Zbl0308.57011
  13. [13] F. Kamber and P. Tondeur, De Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), 415-431. Zbl0637.53043
  14. [14] E. Macías and E. Sanmartín, Minimal foliations on Lie groups, Indag. Math. 3 (1992), 41-46. Zbl0766.53021
  15. [15] X. Masa, Duality and minimality in Riemannian foliations, Comment. Math. Helv. 67 (1992), 17-27. Zbl0778.53029
  16. [16] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Proc. A1 85 (1982), 45-76. Zbl0516.57016
  17. [17] P. Molino, Riemannian Foliations, Progr. Math. 73, Birkhäuser, Boston, 1988. 
  18. [18] P. Molino et V. Sergiescu, Deux remarques sur les flots riemanniens, Manuscripta Math. 51 (1985), 145-161. Zbl0585.53026
  19. [19] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132. Zbl0122.16604
  20. [20] H. Rummler, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, Comment. Math. Helv. 54 (1979), 224-239. Zbl0409.57026
  21. [21] E. Salem, Riemannian foliations and pseudogroups of isometries, in: Riemannian Foliations, Progr. Math. 73, Birkhäuser, Boston, 1988. 
  22. [22] V. Sergiescu, Cohomologie basique et dualité des feuilletages riemanniens, Ann. Inst. Fourier (Grenoble) 35 (1985), 137-158. Zbl0563.57012
  23. [23] A. Verona, A de Rham type theorem, Proc. Amer. Math. Soc. 104 (1988), 300-302. Zbl0667.57021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.