The strongest vector space topology is locally convex on separable linear subspaces
Annales Polonici Mathematici (1997)
- Volume: 66, Issue: 1, page 275-282
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topW. Żelazko. "The strongest vector space topology is locally convex on separable linear subspaces." Annales Polonici Mathematici 66.1 (1997): 275-282. <http://eudml.org/doc/269973>.
@article{W1997,
	abstract = {Let X be a real or complex vector space equipped with the strongest vector space topology $τ_\{max\}$. Besides the result announced in the title we prove that X is uncountable-dimensional if and only if it is not locally pseudoconvex.},
	author = {W. Żelazko},
	journal = {Annales Polonici Mathematici},
	keywords = {topological vector spaces; locally pseudoconvex spaces; locally convex subspaces; strongest vector space topology; strongest locally convex topology; locally -convex; locally pseudoconvex; (un-) countable dimension; pseudoconvex},
	language = {eng},
	number = {1},
	pages = {275-282},
	title = {The strongest vector space topology is locally convex on separable linear subspaces},
	url = {http://eudml.org/doc/269973},
	volume = {66},
	year = {1997},
}
TY  - JOUR
AU  - W. Żelazko
TI  - The strongest vector space topology is locally convex on separable linear subspaces
JO  - Annales Polonici Mathematici
PY  - 1997
VL  - 66
IS  - 1
SP  - 275
EP  - 282
AB  - Let X be a real or complex vector space equipped with the strongest vector space topology $τ_{max}$. Besides the result announced in the title we prove that X is uncountable-dimensional if and only if it is not locally pseudoconvex.
LA  - eng
KW  - topological vector spaces; locally pseudoconvex spaces; locally convex subspaces; strongest vector space topology; strongest locally convex topology; locally -convex; locally pseudoconvex; (un-) countable dimension; pseudoconvex
UR  - http://eudml.org/doc/269973
ER  - 
References
top- [1] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932. Zbl0005.20901
- [2] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958.
- [3] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
- [4] A. Grothendieck, Topological Vector Spaces, Gordon and Breach, New York, 1973.
- [5] A. Kokk and W. Żelazko, On vector spaces and algebras with maximal locally pseudoconvex topologies, Studia Math. 112 (1995), 195-201. Zbl0837.46037
- [6] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. Zbl0179.17001
- [7] G. Köthe, Topological Vector Spaces II, Springer, Berlin, 1979. Zbl0417.46001
- [8] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
- [9] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
- [10] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971. Zbl0225.46001
- [11] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. Zbl0395.46001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 