On certain subclasses of analytic functions associated with the Carlson–Shaffer operator

Jagannath Patel; Ashok Kumar Sahoo

Annales UMCS, Mathematica (2015)

  • Volume: 68, Issue: 2, page 65-83
  • ISSN: 2083-7402

Abstract

top
The object of the present paper is to solve Fekete-Szegö problem and determine the sharp tipper bound to the second Hankel determinant for a certain class ℛλ(a, c, A, B) of analytic functions in the unit disk. We also investigate several majorization properties for functions belonging to a subclass ℛλ(a, c, A, B) of ℛλ(a,c, A, B) and related function classes. Relevant connections of the main results obtained here with those given by earlier workers on the subject are pointed out.

How to cite

top

Jagannath Patel, and Ashok Kumar Sahoo. "On certain subclasses of analytic functions associated with the Carlson–Shaffer operator." Annales UMCS, Mathematica 68.2 (2015): 65-83. <http://eudml.org/doc/269974>.

@article{JagannathPatel2015,
abstract = {The object of the present paper is to solve Fekete-Szegö problem and determine the sharp tipper bound to the second Hankel determinant for a certain class ℛλ(a, c, A, B) of analytic functions in the unit disk. We also investigate several majorization properties for functions belonging to a subclass ℛλ(a, c, A, B) of ℛλ(a,c, A, B) and related function classes. Relevant connections of the main results obtained here with those given by earlier workers on the subject are pointed out.},
author = {Jagannath Patel, Ashok Kumar Sahoo},
journal = {Annales UMCS, Mathematica},
keywords = {Analytic function; subordination; Hadamard product; majorization; Fekete-Szegö problem; Hankel determinant; starlike functions; convex functions; Fekete-Szegő problem},
language = {eng},
number = {2},
pages = {65-83},
title = {On certain subclasses of analytic functions associated with the Carlson–Shaffer operator},
url = {http://eudml.org/doc/269974},
volume = {68},
year = {2015},
}

TY - JOUR
AU - Jagannath Patel
AU - Ashok Kumar Sahoo
TI - On certain subclasses of analytic functions associated with the Carlson–Shaffer operator
JO - Annales UMCS, Mathematica
PY - 2015
VL - 68
IS - 2
SP - 65
EP - 83
AB - The object of the present paper is to solve Fekete-Szegö problem and determine the sharp tipper bound to the second Hankel determinant for a certain class ℛλ(a, c, A, B) of analytic functions in the unit disk. We also investigate several majorization properties for functions belonging to a subclass ℛλ(a, c, A, B) of ℛλ(a,c, A, B) and related function classes. Relevant connections of the main results obtained here with those given by earlier workers on the subject are pointed out.
LA - eng
KW - Analytic function; subordination; Hadamard product; majorization; Fekete-Szegö problem; Hankel determinant; starlike functions; convex functions; Fekete-Szegő problem
UR - http://eudml.org/doc/269974
ER -

References

top
  1. [1] Altinta,s, O., Özkan, O., Srivastava, H. M., Majorization by starlike functions of complex order, Complex Var. 46 (2001), 207-218. Zbl1022.30016
  2. [2] Caplinger, T. R., Causey, W. M., A class of univalent functions, Proc. Amer. Math. Soc. 39 (1973), 357-361.[Crossref] Zbl0267.30010
  3. [3] Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745. Zbl0567.30009
  4. [4] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, USA, 1983. 
  5. [5] Fekete, M., Szegö, G., Eine Bemerkung ¨uber ungerede schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89.[Crossref] Zbl59.0347.04
  6. [6] Goyal, S. P., Goswami, P., Majorization for certain subclass of analytic functions defined by linear operator using differential subordination, Appl. Math. Letters 22 (2009), 1855-1858.[Crossref] Zbl1182.30013
  7. [7] Goyal, S. P., Bansal, S. K., Goswami, P., Majorization for certain classes of functions by fractional derivatives, J. Appl. Math. Stat. Informatics 6(2) (2010), 45-50. 
  8. [8] Janteng, A., Halim, S. A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2006), Art. 50 [http://jipam.vu.edu.au/]. Zbl1134.30310
  9. [9] Janteng, A., Halim, S. A., Darus, M., Estimate on the second Hankel functional for functions whose derivative has a positive real part, J. Quality Measurement and Analysis 4 (2008), 189-195. 
  10. [10] Juneja, O. P., Mogra, M. L., A class of univalent functions, Bull. Sci. Math. (2) 103 (1979), 435-447. Zbl0419.30014
  11. [11] Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.[Crossref] Zbl0165.09102
  12. [12] Koepf, W., On the Fekete-Szegö problem for close-to-convex functions. II, Arch. Math. (Basel) 49 (1987), 420-433.[Crossref] Zbl0635.30020
  13. [13] Koepf, W., On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95. Zbl0635.30019
  14. [14] Libera, R. J., Złotkiewicz, E. J., Early coefficient of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (2) (1982), 225-230.[Crossref] Zbl0464.30019
  15. [15] Libera, R. J., Złotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (2) (1983), 251-257. Zbl0488.30010
  16. [16] Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169. Zbl0823.30007
  17. [17] MacGregor, T. H., Functions whose derivative have a positive real part, Trans. Amer. Math. Soc. 104(3) (1962), 532-537.[Crossref] Zbl0106.04805
  18. [18] MacGregor, T. H., The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514-520.[Crossref] Zbl0114.28001
  19. [19] MacGregor, T. H., Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.[Crossref] Zbl0148.30901
  20. [20] Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000. 
  21. [21] Mishra, A. K., Kund, S. N., The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator, Tamkang J. Math. 44(1) (2013), 73-82. Zbl1278.30016
  22. [22] Nehari, Z., Conformal Mapping, McGraw-Hill Book Company, New York, Toronto and London, 1952. Zbl0048.31503
  23. [23] Noonan, J. W., Thomas, D. K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. Zbl0346.30012
  24. [24] Noor, K. I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Appl. 28 (1983), no. 8, 731-739. Zbl0524.30008
  25. [25] Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077. Zbl0611.33007
  26. [26] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.[Crossref] Zbl0303.30006
  27. [27] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.[Crossref] Zbl0311.30007
  28. [28] Srivastava, H. M., Karlson, P. W., Karlsson, Per W., Multiple Gaussian Hypergeometric Series (Mathematics and its Applications), A Halsted Press Book (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.