Approximation by Durrmeyer-type operators

Vijay Gupta; G. S. Srivastava

Annales Polonici Mathematici (1996)

  • Volume: 64, Issue: 2, page 153-159
  • ISSN: 0066-2216

Abstract

top
We define a new kind of Durrmeyer-type summation-integral operators and study a global direct theorem for these operators in terms of the Ditzian-Totik modulus of smoothness.

How to cite

top

Vijay Gupta, and G. S. Srivastava. "Approximation by Durrmeyer-type operators." Annales Polonici Mathematici 64.2 (1996): 153-159. <http://eudml.org/doc/269980>.

@article{VijayGupta1996,
abstract = {We define a new kind of Durrmeyer-type summation-integral operators and study a global direct theorem for these operators in terms of the Ditzian-Totik modulus of smoothness.},
author = {Vijay Gupta, G. S. Srivastava},
journal = {Annales Polonici Mathematici},
keywords = {modulus of smoothness; global direct theorem; differential and integral operators; Ditzian-Totik modulus of smoothness},
language = {eng},
number = {2},
pages = {153-159},
title = {Approximation by Durrmeyer-type operators},
url = {http://eudml.org/doc/269980},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Vijay Gupta
AU - G. S. Srivastava
TI - Approximation by Durrmeyer-type operators
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 2
SP - 153
EP - 159
AB - We define a new kind of Durrmeyer-type summation-integral operators and study a global direct theorem for these operators in terms of the Ditzian-Totik modulus of smoothness.
LA - eng
KW - modulus of smoothness; global direct theorem; differential and integral operators; Ditzian-Totik modulus of smoothness
UR - http://eudml.org/doc/269980
ER -

References

top
  1. [1] M. M. Derriennic, Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés, J. Approx. Theory 31 (1981), 325-343. Zbl0475.41025
  2. [2] Z. Ditzian and K. Ivanov, Bernstein type operators and their derivatives, J. Approx. Theory 56 (1989), 72-90. 
  3. [3] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Ser. Comput. Math. 9, Springer, Berlin, 1987. 
  4. [4] J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments, Thèse de 3e Cycle, Faculté des Sciences de l'Université de Paris, 1967. 
  5. [5] V. Gupta, A note on modified Baskakov type operators, Approx. Theory Appl. 10 (1994), 74-78. Zbl0823.41021
  6. [6] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl. 5 (1989), 105-127. Zbl0669.41014
  7. [7] H. S. Kasana, P. N. Agrawal and V. Gupta, Inverse and saturation theorems for linear combination of modified Baskakov operators, Approx. Theory Appl. 7 (1991), 65-82. Zbl0755.41024
  8. [8] S. M. Mazhar and V. Totik, Approximation by modified Szász operators, Acta Sci. Math. (Szeged) 49 (1985), 257-269. Zbl0611.41013
  9. [9] A. Sahai and G. Prasad, On simultaneous approximation by modified Lupas operators, J. Approx. Theory 45 (1985), 122-128. Zbl0596.41035
  10. [10] R. P. Sinha, P. N. Agrawal and V. Gupta, On simultaneous approximation by modified Baskakov operators, Bull. Soc. Math. Belg. Sér. B 42 (1991), 217-231. Zbl0762.41022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.