# On reconstruction of polynomial automorphisms

Annales Polonici Mathematici (1996)

- Volume: 64, Issue: 1, page 61-69
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topPaweł Gniadek. "On reconstruction of polynomial automorphisms." Annales Polonici Mathematici 64.1 (1996): 61-69. <http://eudml.org/doc/269984>.

@article{PawełGniadek1996,

abstract = {We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.},

author = {Paweł Gniadek},

journal = {Annales Polonici Mathematici},

keywords = {polynomial automorphisms; reconstruction of polynomial automorphisms; Gröbner bases; identity set of two polynomial automorphisms},

language = {eng},

number = {1},

pages = {61-69},

title = {On reconstruction of polynomial automorphisms},

url = {http://eudml.org/doc/269984},

volume = {64},

year = {1996},

}

TY - JOUR

AU - Paweł Gniadek

TI - On reconstruction of polynomial automorphisms

JO - Annales Polonici Mathematici

PY - 1996

VL - 64

IS - 1

SP - 61

EP - 69

AB - We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.

LA - eng

KW - polynomial automorphisms; reconstruction of polynomial automorphisms; Gröbner bases; identity set of two polynomial automorphisms

UR - http://eudml.org/doc/269984

ER -

## References

top- [A-E] K. Adjamagbo and A. van den Essen, A resultant criterion and formula for the inversion of a polynomial map in two variables, J. Pure Appl. Algebra 64 (1990), 1-6.
- [E] A. van den Essen, A criterion to decide if a polynomial map is invertible and to compute the inverse, Comm. Algebra 18 (1990), 3183-3186. Zbl0718.13008
- [E-K] A. van den Essen and M. Kwieciński, On the reconstruction of polynomial automorphisms from their face polynomials, J. Pure Appl. Algebra 80 (1992), 327-336. Zbl0763.14004
- [B] B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in: Multidimensional Systems Theory, N. Bose (ed.), Reidel, Dordrecht, 1985, 164-232. Zbl0587.13009
- [J1] Z. Jelonek, Identity sets for polynomial automorphisms, J. Pure Appl. Algebra 76 (1991), 333-337. Zbl0752.14010
- [J2] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617. Zbl0806.14011
- [K1] M. Kwieciński, A Gröbner basis criterion for isomorphisms of algebraic varieties, J. Pure Appl. Algebra 74 (1991), 275-279. Zbl0754.13021
- [K2] M. Kwieciński, Automorphisms from face polynomials via two Gröbner bases, J. Pure Appl. Algebra 82 (1992), 65-70. Zbl0805.13009
- [L-J] M. Lejeune-Jalabert, Effectivité de Calculs Polynomiaux, Cours de D.E.A., Univ. de Grenoble, 1986.
- J. McKay and S. Wang, An inversion formula for two polynomials in two variables, J. Pure Appl. Algebra 52 (1988), 103-119. Zbl0664.13001
- [P-P] F. Pauer and M. Pheifhofer, The theory of Gröbner bases, Enseign. Math. 34 (1988), 215-232.
- [W] T. Winiarski, Application of Gröbner bases in the theory of polynomial mappings, XIV Instructional Conf. in the Theory of Extremal Problems, Łódź Univ., 1993 (in Polish). Zbl0806.13009

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.