On reconstruction of polynomial automorphisms
Annales Polonici Mathematici (1996)
- Volume: 64, Issue: 1, page 61-69
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topPaweł Gniadek. "On reconstruction of polynomial automorphisms." Annales Polonici Mathematici 64.1 (1996): 61-69. <http://eudml.org/doc/269984>.
@article{PawełGniadek1996,
abstract = {We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.},
author = {Paweł Gniadek},
journal = {Annales Polonici Mathematici},
keywords = {polynomial automorphisms; reconstruction of polynomial automorphisms; Gröbner bases; identity set of two polynomial automorphisms},
language = {eng},
number = {1},
pages = {61-69},
title = {On reconstruction of polynomial automorphisms},
url = {http://eudml.org/doc/269984},
volume = {64},
year = {1996},
}
TY - JOUR
AU - Paweł Gniadek
TI - On reconstruction of polynomial automorphisms
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 1
SP - 61
EP - 69
AB - We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.
LA - eng
KW - polynomial automorphisms; reconstruction of polynomial automorphisms; Gröbner bases; identity set of two polynomial automorphisms
UR - http://eudml.org/doc/269984
ER -
References
top- [A-E] K. Adjamagbo and A. van den Essen, A resultant criterion and formula for the inversion of a polynomial map in two variables, J. Pure Appl. Algebra 64 (1990), 1-6.
- [E] A. van den Essen, A criterion to decide if a polynomial map is invertible and to compute the inverse, Comm. Algebra 18 (1990), 3183-3186. Zbl0718.13008
- [E-K] A. van den Essen and M. Kwieciński, On the reconstruction of polynomial automorphisms from their face polynomials, J. Pure Appl. Algebra 80 (1992), 327-336. Zbl0763.14004
- [B] B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in: Multidimensional Systems Theory, N. Bose (ed.), Reidel, Dordrecht, 1985, 164-232. Zbl0587.13009
- [J1] Z. Jelonek, Identity sets for polynomial automorphisms, J. Pure Appl. Algebra 76 (1991), 333-337. Zbl0752.14010
- [J2] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617. Zbl0806.14011
- [K1] M. Kwieciński, A Gröbner basis criterion for isomorphisms of algebraic varieties, J. Pure Appl. Algebra 74 (1991), 275-279. Zbl0754.13021
- [K2] M. Kwieciński, Automorphisms from face polynomials via two Gröbner bases, J. Pure Appl. Algebra 82 (1992), 65-70. Zbl0805.13009
- [L-J] M. Lejeune-Jalabert, Effectivité de Calculs Polynomiaux, Cours de D.E.A., Univ. de Grenoble, 1986.
- J. McKay and S. Wang, An inversion formula for two polynomials in two variables, J. Pure Appl. Algebra 52 (1988), 103-119. Zbl0664.13001
- [P-P] F. Pauer and M. Pheifhofer, The theory of Gröbner bases, Enseign. Math. 34 (1988), 215-232.
- [W] T. Winiarski, Application of Gröbner bases in the theory of polynomial mappings, XIV Instructional Conf. in the Theory of Extremal Problems, Łódź Univ., 1993 (in Polish). Zbl0806.13009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.