Fueter regular mappings and harmonicity

Wiesław Królikowski

Annales Polonici Mathematici (1996)

  • Volume: 64, Issue: 2, page 97-114
  • ISSN: 0066-2216

Abstract

top
It is shown that Fueter regular functions appear in connection with the Eells condition for harmonicity. New conditions for mappings from 4-dimensional conformally flat manifolds to be harmonic are obtained.

How to cite

top

Wiesław Królikowski. "Fueter regular mappings and harmonicity." Annales Polonici Mathematici 64.2 (1996): 97-114. <http://eudml.org/doc/269987>.

@article{WiesławKrólikowski1996,
abstract = {It is shown that Fueter regular functions appear in connection with the Eells condition for harmonicity. New conditions for mappings from 4-dimensional conformally flat manifolds to be harmonic are obtained.},
author = {Wiesław Królikowski},
journal = {Annales Polonici Mathematici},
keywords = {quaternions; Fueter regular functions; harmonic mappings; Fueter regular function; harmonic mapping; 4-manifolds; quaternionic manifolds},
language = {eng},
number = {2},
pages = {97-114},
title = {Fueter regular mappings and harmonicity},
url = {http://eudml.org/doc/269987},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Wiesław Królikowski
TI - Fueter regular mappings and harmonicity
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 2
SP - 97
EP - 114
AB - It is shown that Fueter regular functions appear in connection with the Eells condition for harmonicity. New conditions for mappings from 4-dimensional conformally flat manifolds to be harmonic are obtained.
LA - eng
KW - quaternions; Fueter regular functions; harmonic mappings; Fueter regular function; harmonic mapping; 4-manifolds; quaternionic manifolds
UR - http://eudml.org/doc/269987
ER -

References

top
  1. [1] M. M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés Riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330. Zbl0068.36002
  2. [2] A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. 10, Springer, Berlin, 1987. 
  3. [3] E. Bonan, Sur les G-structures de type quaternionien, Cahiers Topologie Géom. Différentielle 9 (1967), 389-461. Zbl0171.20802
  4. [4] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer, New York, 1982. Zbl0496.55001
  5. [5] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conf. Ser. in Math. 50, Amer. Math. Soc., 1983. Zbl0515.58011
  6. [6] R. Fueter, Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307-330. Zbl61.1131.05
  7. [7] R. Fueter, Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, Comment. Math. Helv. 8 (1936), 371-378. Zbl62.0120.04
  8. [8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I-II, Interscience, 1963. Zbl0119.37502
  9. [9] W. Królikowski, On Fueter-Hurwitz regular mappings, Dissertationes Math. 353 (1996). Zbl0864.30038
  10. [10] W. Królikowski and R. M. Porter, Quaternionic regular and biregular functions in the sense of Fueter, in: Proc. Fourth Finnish-Polish Summer School in Complex Analysis at Jyväskylä, Ber. Univ. Jyväskylä, Math. Inst. 55 (1993), 65-87. Zbl0785.30023
  11. [11] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton Univ. Press and Univ. of Tokyo Press, Princeton, N.J., 1974. Zbl0298.57008
  12. [12] A. J. Sommese, Quaternionic manifolds, Math. Ann. 212 (1975), 191-214. Zbl0299.53023
  13. [13] V. Souček, Holomorphicity in quaternionic analysis, in: Seminari di Geometria 1982-1983, Università di Bologna, Istituto de Geometria, Dipartimento de Matematica, 1984, 147-153. Zbl0599.30077
  14. [14] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos Soc. 85 (1979), 199-225. Zbl0399.30038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.