The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
Jan Kurek; Włodzimierz M. Mikulski
Annales UMCS, Mathematica (2015)
- Volume: 68, Issue: 2, page 59-64
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topJan Kurek, and Włodzimierz M. Mikulski. "The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds." Annales UMCS, Mathematica 68.2 (2015): 59-64. <http://eudml.org/doc/270006>.
@article{JanKurek2015,
abstract = {If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.},
author = {Jan Kurek, Włodzimierz M. Mikulski},
journal = {Annales UMCS, Mathematica},
keywords = {Riemannian manifold; higher order vector tangent bundle; higher order cotangent bundle; natural tensor; natural operator},
language = {eng},
number = {2},
pages = {59-64},
title = {The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds},
url = {http://eudml.org/doc/270006},
volume = {68},
year = {2015},
}
TY - JOUR
AU - Jan Kurek
AU - Włodzimierz M. Mikulski
TI - The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
JO - Annales UMCS, Mathematica
PY - 2015
VL - 68
IS - 2
SP - 59
EP - 64
AB - If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.
LA - eng
KW - Riemannian manifold; higher order vector tangent bundle; higher order cotangent bundle; natural tensor; natural operator
UR - http://eudml.org/doc/270006
ER -
References
top- [1] Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631-645. Zbl0321.53039
- [2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York-London, 1963. Zbl0119.37502
- [3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993. Zbl0782.53013
- [4] Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181-186. Zbl0678.58002
- [5] Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29-35. Zbl0778.58003
- [6] Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783-803. Zbl0766.58005
- [7] Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317-334.
- [8] Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.