On a universal axiomatization of the real closed fields

Krzysztof Jan Nowak

Annales Polonici Mathematici (1996)

  • Volume: 65, Issue: 1, page 95-103
  • ISSN: 0066-2216

Abstract

top
This paper presents a natural axiomatization of the real closed fields. It is universal and admits quantifier elimination.

How to cite

top

Krzysztof Jan Nowak. "On a universal axiomatization of the real closed fields." Annales Polonici Mathematici 65.1 (1996): 95-103. <http://eudml.org/doc/270007>.

@article{KrzysztofJanNowak1996,
abstract = {This paper presents a natural axiomatization of the real closed fields. It is universal and admits quantifier elimination.},
author = {Krzysztof Jan Nowak},
journal = {Annales Polonici Mathematici},
keywords = {real closed fields; real valuations; Nash functions; quantifier elimination; axiomatization},
language = {eng},
number = {1},
pages = {95-103},
title = {On a universal axiomatization of the real closed fields},
url = {http://eudml.org/doc/270007},
volume = {65},
year = {1996},
}

TY - JOUR
AU - Krzysztof Jan Nowak
TI - On a universal axiomatization of the real closed fields
JO - Annales Polonici Mathematici
PY - 1996
VL - 65
IS - 1
SP - 95
EP - 103
AB - This paper presents a natural axiomatization of the real closed fields. It is universal and admits quantifier elimination.
LA - eng
KW - real closed fields; real valuations; Nash functions; quantifier elimination; axiomatization
UR - http://eudml.org/doc/270007
ER -

References

top
  1. [1] Artin, E., Schreier, O.: Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg 5 (1927), 85-99. 
  2. [2] Bierstone, E., Milman, P. D.: Semianalytic and subanalytic sets, Publ. Math. I.H.E.S. 67 (1988), 1-42. Zbl0674.32002
  3. [3] Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle, Springer, 1987. 
  4. [4] Chang, C. C., Keisler, H. J.: Model Theory, North-Holland, Amsterdam, 1973. 
  5. [5] m Denkowska, Z., Łojasiewicz, S., Stasica, J.: Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. Zbl0435.32006
  6. [6] Keisler, H. J.: Fundamentals of model theory, in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 47-103. 
  7. [7] Łoś, J.: On the extending of models I, Fund. Math. 42 (1955), 38-54. Zbl0065.00401
  8. [8] Prestel, A.: Lectures on Formally Real Fields, Lecture Notes in Math. 1093, Springer, 1984. Zbl0548.12011
  9. [9] Ribbenboim, P.: Théorie des Valuations, Les Presses de l'Université de Montréal, 1968. 
  10. [10] Tarski, A.: The Completeness of Elementary Algebra and Geometry, Hermann, Paris, 1940. 
  11. [11] Tarski, A.: Contributions to the theory of models I, II, Indag. Math. 16 (1954), 572-588. Zbl0058.24702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.