Algebraic connectivity of -connected graphs
Stephen J. Kirkland; Israel Rocha; Vilmar Trevisan
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 219-236
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKirkland, Stephen J., Rocha, Israel, and Trevisan, Vilmar. "Algebraic connectivity of $k$-connected graphs." Czechoslovak Mathematical Journal 65.1 (2015): 219-236. <http://eudml.org/doc/270032>.
@article{Kirkland2015,
abstract = {Let $G$ be a $k$-connected graph with $k \ge 2$. A hinge is a subset of $k$ vertices whose deletion from $G$ yields a disconnected graph. We consider the algebraic connectivity and Fiedler vectors of such graphs, paying special attention to the signs of the entries in Fiedler vectors corresponding to vertices in a hinge, and to vertices in the connected components at a hinge. The results extend those in Fiedler’s papers Algebraic connectivity of graphs (1973), A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory (1975), and Kirkland and Fallat’s paper Perron Components and Algebraic Connectivity for Weighted Graphs (1998).},
author = {Kirkland, Stephen J., Rocha, Israel, Trevisan, Vilmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {algebraic connectivity; Fiedler vector},
language = {eng},
number = {1},
pages = {219-236},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Algebraic connectivity of $k$-connected graphs},
url = {http://eudml.org/doc/270032},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Kirkland, Stephen J.
AU - Rocha, Israel
AU - Trevisan, Vilmar
TI - Algebraic connectivity of $k$-connected graphs
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 219
EP - 236
AB - Let $G$ be a $k$-connected graph with $k \ge 2$. A hinge is a subset of $k$ vertices whose deletion from $G$ yields a disconnected graph. We consider the algebraic connectivity and Fiedler vectors of such graphs, paying special attention to the signs of the entries in Fiedler vectors corresponding to vertices in a hinge, and to vertices in the connected components at a hinge. The results extend those in Fiedler’s papers Algebraic connectivity of graphs (1973), A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory (1975), and Kirkland and Fallat’s paper Perron Components and Algebraic Connectivity for Weighted Graphs (1998).
LA - eng
KW - algebraic connectivity; Fiedler vector
UR - http://eudml.org/doc/270032
ER -
References
top- Bapat, R. B., Kirkland, S. J., Pati, S., 10.1080/03081080108818697, Linear Multilinear Algebra 49 (2001), 219-242. (2001) Zbl0984.05056MR1888190DOI10.1080/03081080108818697
- Bapat, R. B., Lal, A. K., Pati, S., 10.1080/03081087.2011.603727, Linear Multilinear Algebra 60 (2012), 415-432. (2012) Zbl1244.05139MR2903493DOI10.1080/03081087.2011.603727
- Bapat, R. B., Pati, S., 10.1080/03081089808818590, Linear Multilinear Algebra 45 (1998), 247-273. (1998) Zbl0944.05066MR1671627DOI10.1080/03081089808818590
- Abreu, N. M. M. de, 10.1016/j.laa.2006.08.017, Linear Algebra Appl. 423 (2007), 53-73. (2007) Zbl1115.05056MR2312323DOI10.1016/j.laa.2006.08.017
- Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech. Math. J. 25 (1975), 619-633. (1975) Zbl0437.15004MR0387321
- Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007
- Kirkland, S., Algebraic connectivity, Handbook of Linear Algebra Discrete Mathematics and Its Applications Chapman & Hall/CRC, Boca Raton (2007), 36-1-36-12 L. Hogben et al. (2007) MR3013937
- Kirkland, S., Neumann, M., Shader, B. L., 10.1080/03081089608818448, Linear Multilinear Algebra 40 (1996), 311-325. (1996) Zbl0866.05041MR1384650DOI10.1080/03081089608818448
- Kirkland, S., Fallat, S., 10.1080/03081089808818554, Linear Multilinear Algebra 44 (1998), 131-148. (1998) Zbl0926.05026MR1674228DOI10.1080/03081089808818554
- Merris, R., Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Nikiforov, V., The influence of Miroslav Fiedler on spectral graph theory, Linear Algebra Appl. 439 (2013), 818-821. (2013) Zbl1282.05145MR3061737
- Pothen, A., Simon, H. D., Liou, K.-P., 10.1137/0611030, SIAM J. Matrix Anal. Appl. 11 (1990), 430-452. (1990) Zbl0711.65034MR1054210DOI10.1137/0611030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.