The L p -Helmholtz projection in finite cylinders

Tobias Nau

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 1, page 119-134
  • ISSN: 0011-4642

Abstract

top
In this article we prove for 1 < p < the existence of the L p -Helmholtz projection in finite cylinders Ω . More precisely, Ω is considered to be given as the Cartesian product of a cube and a bounded domain V having C 1 -boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in Ω is solved, which implies existence and a representation of the L p -Helmholtz projection as a Fourier multiplier operator.

How to cite

top

Nau, Tobias. "The $L^p$-Helmholtz projection in finite cylinders." Czechoslovak Mathematical Journal 65.1 (2015): 119-134. <http://eudml.org/doc/270035>.

@article{Nau2015,
abstract = {In this article we prove for $1<p<\infty $ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.},
author = {Nau, Tobias},
journal = {Czechoslovak Mathematical Journal},
keywords = {Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal \{R\}$-boundedness; reflection technique; fluid dynamics; Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; -space; operator-valued Fourier multiplier; -boundedness; reflection technique; fluid dynamics},
language = {eng},
number = {1},
pages = {119-134},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $L^p$-Helmholtz projection in finite cylinders},
url = {http://eudml.org/doc/270035},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Nau, Tobias
TI - The $L^p$-Helmholtz projection in finite cylinders
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 119
EP - 134
AB - In this article we prove for $1<p<\infty $ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.
LA - eng
KW - Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal {R}$-boundedness; reflection technique; fluid dynamics; Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; -space; operator-valued Fourier multiplier; -boundedness; reflection technique; fluid dynamics
UR - http://eudml.org/doc/270035
ER -

References

top
  1. Abels, H., 10.1007/s00021-004-0116-8, J. Math. Fluid Mech. 7 (2005), 201-222. (2005) Zbl1070.35020MR2177127DOI10.1007/s00021-004-0116-8
  2. Abels, H., 10.1007/s00021-004-0117-7, J. Math. Fluid Mech. 7 (2005), 223-260. (2005) Zbl1083.35085MR2177128DOI10.1007/s00021-004-0117-7
  3. Arendt, W., Bu, S., 10.1007/s002090100384, Math. Z. 240 (2002), 311-343. (2002) Zbl1018.47008MR1900314DOI10.1007/s002090100384
  4. Bernstein, S., Sur la convergence absolue des séries trigonométriques, C. R. Acad. Sci., Paris 158 French (1914), 1661-1663. (1914) 
  5. Bogovskiĭ, M. E., Decomposition of L p ( Ω ; n ) into a direct sum of subspaces of solenoidal and potential vector fields, Sov. Math., Dokl. 33 (1986), 161-165 translated from Russian original in Dokl. Akad. Nauk SSSR 286 (1986), 781-786. (1986) MR0828621
  6. Bu, S., 10.1007/s11425-006-0574-y, Sci. China, Ser. A 49 (2006), 574-576. (2006) Zbl1160.42305MR2250485DOI10.1007/s11425-006-0574-y
  7. Bu, S., Kim, J.-M., Operator-valued Fourier multiplier theorems on L p -spaces on 𝕋 d , Arch. Math. 82 (2004), 404-414. (2004) MR2061447
  8. Denk, R., Hieber, M., Prüss, J., -boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Am. Math. Soc. 788 (2003), 114. (2003) MR2006641
  9. Farwig, R., Weighted L q -Helmholtz decompositions in infinite cylinders and in infinite layers, Adv. Differ. Equ. 8 (2003), 357-384. (2003) Zbl1038.35068MR1948530
  10. Farwig, R., Kozono, H., Sohr, H., 10.1007/s00013-006-1910-8, Arch. Math. 88 (2007), 239-248. (2007) Zbl1121.35097MR2305602DOI10.1007/s00013-006-1910-8
  11. Farwig, R., Myong-Hwan, R., 10.1007/s00021-006-0235-5, J. Math. Fluid Mech. 10 (2008), 352-387. (2008) Zbl1162.76322MR2430805DOI10.1007/s00021-006-0235-5
  12. Farwig, R., Ri, M.-H., 10.4064/sm178-3-1, Stud. Math. 178 (2007), 197-216. (2007) Zbl1111.35034MR2289354DOI10.4064/sm178-3-1
  13. Farwig, R., Ri, M.-H., 10.1002/mana.200510536, Math. Nachr. 280 (2007), 1061-1082. (2007) Zbl1131.35055MR2334660DOI10.1002/mana.200510536
  14. Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems, Springer Tracts in Natural Philosophy 38 Springer, New York (1994). (1994) Zbl0949.35004MR1284205
  15. Kunstmann, P. C., Weis, L., Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus, Functional Analytic Methods for Evolution Equations Lecture Notes in Math. 1855 Springer, Berlin (2004), 65-311. (2004) Zbl1097.47041MR2108959
  16. Nau, T., L P -Theory of Cylindrical Boundary Value Problems, Springer Spektrum Wiesbaden (2012). (2012) Zbl1252.35003MR2987207
  17. Ruzhansky, M., Turunen, V., Pseudo-Differential Operators and Symmetries, Pseudo-Differential Operators. Theory and Applications 2: Background Analysis and Advanced Topics Birkhäuser, Basel (2010). (2010) Zbl1193.35261MR2567604
  18. Štrkalj, Ž., Weis, L., 10.1090/S0002-9947-07-04417-0, Trans. Am. Math. Soc. 359 (2007), 3529-3547. (2007) Zbl1209.42005MR2302504DOI10.1090/S0002-9947-07-04417-0

NotesEmbed ?

top

You must be logged in to post comments.