The -Helmholtz projection in finite cylinders
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 119-134
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNau, Tobias. "The $L^p$-Helmholtz projection in finite cylinders." Czechoslovak Mathematical Journal 65.1 (2015): 119-134. <http://eudml.org/doc/270035>.
@article{Nau2015,
abstract = {In this article we prove for $1<p<\infty $ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.},
author = {Nau, Tobias},
journal = {Czechoslovak Mathematical Journal},
keywords = {Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal \{R\}$-boundedness; reflection technique; fluid dynamics; Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; -space; operator-valued Fourier multiplier; -boundedness; reflection technique; fluid dynamics},
language = {eng},
number = {1},
pages = {119-134},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $L^p$-Helmholtz projection in finite cylinders},
url = {http://eudml.org/doc/270035},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Nau, Tobias
TI - The $L^p$-Helmholtz projection in finite cylinders
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 119
EP - 134
AB - In this article we prove for $1<p<\infty $ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.
LA - eng
KW - Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal {R}$-boundedness; reflection technique; fluid dynamics; Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; -space; operator-valued Fourier multiplier; -boundedness; reflection technique; fluid dynamics
UR - http://eudml.org/doc/270035
ER -
References
top- Abels, H., 10.1007/s00021-004-0116-8, J. Math. Fluid Mech. 7 (2005), 201-222. (2005) Zbl1070.35020MR2177127DOI10.1007/s00021-004-0116-8
- Abels, H., 10.1007/s00021-004-0117-7, J. Math. Fluid Mech. 7 (2005), 223-260. (2005) Zbl1083.35085MR2177128DOI10.1007/s00021-004-0117-7
- Arendt, W., Bu, S., 10.1007/s002090100384, Math. Z. 240 (2002), 311-343. (2002) Zbl1018.47008MR1900314DOI10.1007/s002090100384
- Bernstein, S., Sur la convergence absolue des séries trigonométriques, C. R. Acad. Sci., Paris 158 French (1914), 1661-1663. (1914)
- Bogovskiĭ, M. E., Decomposition of into a direct sum of subspaces of solenoidal and potential vector fields, Sov. Math., Dokl. 33 (1986), 161-165 translated from Russian original in Dokl. Akad. Nauk SSSR 286 (1986), 781-786. (1986) MR0828621
- Bu, S., 10.1007/s11425-006-0574-y, Sci. China, Ser. A 49 (2006), 574-576. (2006) Zbl1160.42305MR2250485DOI10.1007/s11425-006-0574-y
- Bu, S., Kim, J.-M., Operator-valued Fourier multiplier theorems on -spaces on , Arch. Math. 82 (2004), 404-414. (2004) MR2061447
- Denk, R., Hieber, M., Prüss, J., -boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Am. Math. Soc. 788 (2003), 114. (2003) MR2006641
- Farwig, R., Weighted -Helmholtz decompositions in infinite cylinders and in infinite layers, Adv. Differ. Equ. 8 (2003), 357-384. (2003) Zbl1038.35068MR1948530
- Farwig, R., Kozono, H., Sohr, H., 10.1007/s00013-006-1910-8, Arch. Math. 88 (2007), 239-248. (2007) Zbl1121.35097MR2305602DOI10.1007/s00013-006-1910-8
- Farwig, R., Myong-Hwan, R., 10.1007/s00021-006-0235-5, J. Math. Fluid Mech. 10 (2008), 352-387. (2008) Zbl1162.76322MR2430805DOI10.1007/s00021-006-0235-5
- Farwig, R., Ri, M.-H., 10.4064/sm178-3-1, Stud. Math. 178 (2007), 197-216. (2007) Zbl1111.35034MR2289354DOI10.4064/sm178-3-1
- Farwig, R., Ri, M.-H., 10.1002/mana.200510536, Math. Nachr. 280 (2007), 1061-1082. (2007) Zbl1131.35055MR2334660DOI10.1002/mana.200510536
- Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems, Springer Tracts in Natural Philosophy 38 Springer, New York (1994). (1994) Zbl0949.35004MR1284205
- Kunstmann, P. C., Weis, L., Maximal -regularity for parabolic equations, Fourier multiplier theorems and -functional calculus, Functional Analytic Methods for Evolution Equations Lecture Notes in Math. 1855 Springer, Berlin (2004), 65-311. (2004) Zbl1097.47041MR2108959
- Nau, T., -Theory of Cylindrical Boundary Value Problems, Springer Spektrum Wiesbaden (2012). (2012) Zbl1252.35003MR2987207
- Ruzhansky, M., Turunen, V., Pseudo-Differential Operators and Symmetries, Pseudo-Differential Operators. Theory and Applications 2: Background Analysis and Advanced Topics Birkhäuser, Basel (2010). (2010) Zbl1193.35261MR2567604
- Štrkalj, Ž., Weis, L., 10.1090/S0002-9947-07-04417-0, Trans. Am. Math. Soc. 359 (2007), 3529-3547. (2007) Zbl1209.42005MR2302504DOI10.1090/S0002-9947-07-04417-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.