On inverse categories with split idempotents
Emil Schwab; Emil Daniel Schwab
Archivum Mathematicum (2015)
- Volume: 051, Issue: 1, page 13-25
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSchwab, Emil, and Schwab, Emil Daniel. "On inverse categories with split idempotents." Archivum Mathematicum 051.1 (2015): 13-25. <http://eudml.org/doc/270036>.
@article{Schwab2015,
abstract = {We present some special properties of inverse categories with split idempotents. First, we examine a Clifford-Leech type theorem relative to such inverse categories. The connection with right cancellative categories with pushouts is illustrated by simple examples. Finally, some basic properties of inverse categories with split idempotents and kernels are studied in terms of split idempotents which generate (right or left) principal ideals of annihilators.},
author = {Schwab, Emil, Schwab, Emil Daniel},
journal = {Archivum Mathematicum},
keywords = {inverse categories; inverse monoids; split idempotents; pointed sets; annihilators; exact sequences},
language = {eng},
number = {1},
pages = {13-25},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On inverse categories with split idempotents},
url = {http://eudml.org/doc/270036},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Schwab, Emil
AU - Schwab, Emil Daniel
TI - On inverse categories with split idempotents
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 1
SP - 13
EP - 25
AB - We present some special properties of inverse categories with split idempotents. First, we examine a Clifford-Leech type theorem relative to such inverse categories. The connection with right cancellative categories with pushouts is illustrated by simple examples. Finally, some basic properties of inverse categories with split idempotents and kernels are studied in terms of split idempotents which generate (right or left) principal ideals of annihilators.
LA - eng
KW - inverse categories; inverse monoids; split idempotents; pointed sets; annihilators; exact sequences
UR - http://eudml.org/doc/270036
ER -
References
top- Clifford, A.H., 10.2307/2372503, Amer. J. Math. 75 (1953), 547–556. (1953) Zbl0051.01302MR0056597DOI10.2307/2372503
- Jones, D.G., Lawson, M.V., 10.1016/j.jalgebra.2014.04.001, J. Algebra 409 (2014), 444–473. (2014) MR3198850DOI10.1016/j.jalgebra.2014.04.001
- Kastl, J., Inverse categories, Studien zur Algebra und ihre Anwendungen, Akademie-Verlag Berlin, 1979, BAnd 7, pp. 51–60. (1979) Zbl0427.18003MR0569574
- Kawahara, Y., 10.2206/kyushumfs.27.149, Mem. Kyushu University, Series A, Math. 27 (1973), 149–173. (1973) Zbl0261.18005MR0390017DOI10.2206/kyushumfs.27.149
- Leech, J., 10.1007/BF02575008, Semigroup Forum 36 (1987), 89–116. (1987) Zbl0634.18002MR0902733DOI10.1007/BF02575008
- Mitchell, B., Theory of categories, Acad. Press New York, 1965. (1965) Zbl0136.00604MR0202787
- Schwab, E., Image and inverse image mappings in exact inverse categories, Boll. U.M.I. 18–B (1981), 831–845. (1981) Zbl0477.18002MR0641740
- Schwab, E., Schwab, E.D., 10.1007/s11083-011-9211-7, Order 296 (2012), 405–417. (2012) MR2979640DOI10.1007/s11083-011-9211-7
- Schwab, E.D., Stoianov, G., 10.1216/RMJ-2011-41-5-1701, Rocky Mountain J. Math 41 (2011), 1701–1710. (2011) Zbl1233.20055MR2838084DOI10.1216/RMJ-2011-41-5-1701
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.