Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator

Eunmi Pak; Juan de Dios Pérez; Carlos J. G. Machado; Changhwa Woo

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 1, page 207-218
  • ISSN: 0011-4642

Abstract

top
We study the classifying problem of immersed submanifolds in Hermitian symmetric spaces. Typically in this paper, we deal with real hypersurfaces in a complex two-plane Grassmannian G 2 ( m + 2 ) which has a remarkable geometric structure as a Hermitian symmetric space of rank 2. In relation to the generalized Tanaka-Webster connection, we consider a new concept of the parallel normal Jacobi operator for real hypersurfaces in G 2 ( m + 2 ) and prove non-existence of real hypersurfaces in G 2 ( m + 2 ) with generalized Tanaka-Webster parallel normal Jacobi operator.

How to cite

top

Pak, Eunmi, et al. "Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator." Czechoslovak Mathematical Journal 65.1 (2015): 207-218. <http://eudml.org/doc/270041>.

@article{Pak2015,
abstract = {We study the classifying problem of immersed submanifolds in Hermitian symmetric spaces. Typically in this paper, we deal with real hypersurfaces in a complex two-plane Grassmannian $G_2(\{\mathbb \{C\}\}^\{m+2\})$ which has a remarkable geometric structure as a Hermitian symmetric space of rank 2. In relation to the generalized Tanaka-Webster connection, we consider a new concept of the parallel normal Jacobi operator for real hypersurfaces in $G_2(\{\mathbb \{C\}\}^\{m+2\})$ and prove non-existence of real hypersurfaces in $G_2(\{\mathbb \{C\}\}^\{m+2\})$ with generalized Tanaka-Webster parallel normal Jacobi operator.},
author = {Pak, Eunmi, de Dios Pérez, Juan, Machado, Carlos J. G., Woo, Changhwa},
journal = {Czechoslovak Mathematical Journal},
keywords = {real hypersurface; complex two-plane Grassmannian; Hopf hypersurface; generalized Tanaka-Webster connection; normal Jacobi operator; generalized Tanaka-Webster parallel normal Jacobi operator},
language = {eng},
number = {1},
pages = {207-218},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator},
url = {http://eudml.org/doc/270041},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Pak, Eunmi
AU - de Dios Pérez, Juan
AU - Machado, Carlos J. G.
AU - Woo, Changhwa
TI - Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 207
EP - 218
AB - We study the classifying problem of immersed submanifolds in Hermitian symmetric spaces. Typically in this paper, we deal with real hypersurfaces in a complex two-plane Grassmannian $G_2({\mathbb {C}}^{m+2})$ which has a remarkable geometric structure as a Hermitian symmetric space of rank 2. In relation to the generalized Tanaka-Webster connection, we consider a new concept of the parallel normal Jacobi operator for real hypersurfaces in $G_2({\mathbb {C}}^{m+2})$ and prove non-existence of real hypersurfaces in $G_2({\mathbb {C}}^{m+2})$ with generalized Tanaka-Webster parallel normal Jacobi operator.
LA - eng
KW - real hypersurface; complex two-plane Grassmannian; Hopf hypersurface; generalized Tanaka-Webster connection; normal Jacobi operator; generalized Tanaka-Webster parallel normal Jacobi operator
UR - http://eudml.org/doc/270041
ER -

References

top
  1. Alekseevskij, D. V., Compact quaternion spaces, Funkts. Anal. Prilozh. 2 (1968), 11-20 Russian. (1968) Zbl0175.19001MR0231314
  2. Berndt, J., Suh, Y. J., 10.1007/s00605-001-0494-4, Monatsh. Math. 137 (2002), 87-98. (2002) Zbl1015.53034MR1937621DOI10.1007/s00605-001-0494-4
  3. Berndt, J., Suh, Y. J., 10.1007/s006050050018, Monatsh. Math. 127 (1999), 1-14. (1999) Zbl0920.53016MR1666307DOI10.1007/s006050050018
  4. Cho, J. T., 10.21099/tkbjm/1496165066, Tsukuba J. Math. 30 (2006), 329-343. (2006) Zbl1131.53025MR2271303DOI10.21099/tkbjm/1496165066
  5. Cho, J. T., CR structures on real hypersurfaces of a complex space form, Publ. Math. 54 (1999), 473-487. (1999) Zbl0929.53029MR1694456
  6. Pérez, J. de Dios, Jeong, I., Suh, Y. J., 10.1007/s10474-007-6091-9, Acta Math. Hung. 117 (2007), 201-217. (2007) MR2361601DOI10.1007/s10474-007-6091-9
  7. Pérez, J. de Dios, Suh, Y. J., 10.1016/S0926-2245(97)00003-X, Differ. Geom. Appl. 7 (1997), 211-217. (1997) MR1480534DOI10.1016/S0926-2245(97)00003-X
  8. Jeong, I., Kim, H. J., Suh, Y. J., Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator, Publ. Math. 76 (2010), 203-218. (2010) Zbl1274.53080MR2598182
  9. Jeong, I., Kimura, M., Lee, H., Suh, Y. J., 10.1007/s00605-013-0475-4, Monatsh. Math. 171 (2013), 357-376. (2013) Zbl1277.53049MR3090797DOI10.1007/s00605-013-0475-4
  10. Jeong, I., Suh, Y. J., 10.5666/KMJ.2011.51.4.395, Kyungpook Math. J. 51 (2011), 395-410. (2011) Zbl1260.53093MR2874974DOI10.5666/KMJ.2011.51.4.395
  11. Lee, H., Suh, Y. J., 10.4134/BKMS.2010.47.3.551, Bull. Korean Math. Soc. 47 (2010), 551-561. (2010) Zbl1206.53064MR2666376DOI10.4134/BKMS.2010.47.3.551
  12. Tanaka, N., 10.4099/math1924.2.131, Jap. J. Math., new Ser. 2 (1976), 131-190. (1976) Zbl0346.32010MR0589931DOI10.4099/math1924.2.131
  13. Tanno, S., 10.1090/S0002-9947-1989-1000553-9, Trans. Am. Math. Soc. 314 (1989), 349-379. (1989) Zbl0677.53043MR1000553DOI10.1090/S0002-9947-1989-1000553-9
  14. Webster, S. M., 10.4310/jdg/1214434345, J. Differ. Geom. 13 (1978), 25-41. (1978) Zbl0379.53016MR0520599DOI10.4310/jdg/1214434345

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.