Lagrange approximation in Banach spaces

Lisa Nilsson; Damián Pinasco; Ignacio M. Zalduendo

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 1, page 281-288
  • ISSN: 0011-4642

Abstract

top
Starting from Lagrange interpolation of the exponential function e z in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E . Given such a representable entire funtion f : E , in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E , we present a sufficient growth condition on the interpolating sequence.

How to cite

top

Nilsson, Lisa, Pinasco, Damián, and Zalduendo, Ignacio M.. "Lagrange approximation in Banach spaces." Czechoslovak Mathematical Journal 65.1 (2015): 281-288. <http://eudml.org/doc/270047>.

@article{Nilsson2015,
abstract = {Starting from Lagrange interpolation of the exponential function $\{\rm e\}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \rightarrow \mathbb \{C\}$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.},
author = {Nilsson, Lisa, Pinasco, Damián, Zalduendo, Ignacio M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lagrange interpolation; Lagrange approximation; Kergin interpolation; Kergin approximation; Banach space},
language = {eng},
number = {1},
pages = {281-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lagrange approximation in Banach spaces},
url = {http://eudml.org/doc/270047},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Nilsson, Lisa
AU - Pinasco, Damián
AU - Zalduendo, Ignacio M.
TI - Lagrange approximation in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 281
EP - 288
AB - Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \rightarrow \mathbb {C}$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.
LA - eng
KW - Lagrange interpolation; Lagrange approximation; Kergin interpolation; Kergin approximation; Banach space
UR - http://eudml.org/doc/270047
ER -

References

top
  1. Andersson, M., Passare, M., 10.1016/0021-9045(91)90076-M, J. Approx. Theory 64 (1991), 214-225. (1991) Zbl0725.32011MR1091471DOI10.1016/0021-9045(91)90076-M
  2. Bloom, T., 10.1215/S0012-7094-81-04805-5, Duke Math. J. 48 (1981), 69-83. (1981) MR0610176DOI10.1215/S0012-7094-81-04805-5
  3. Boor, C. de, Divided differences, Surv. Approx. Theory 1 (2005), 46-69. (2005) Zbl1071.65027MR2221566
  4. Dineen, S., Nilsson, L., 10.1016/j.jmaa.2007.04.035, J. Math. Anal. Appl. 339 146-152 (2008). (2008) Zbl1134.46019MR2370639DOI10.1016/j.jmaa.2007.04.035
  5. Fernique, X., Intégrabilité des vecteurs Gaussiens, C. R. Acad. Sci., Paris, Sér. A 270 1698-1699 (1970), French. (1970) Zbl0206.19002MR0266263
  6. Filipsson, L., 10.1016/j.jat.2004.01.002, J. Approx. Theory 127 108-123 (2004). (2004) Zbl1043.41001MR2053536DOI10.1016/j.jat.2004.01.002
  7. Filipsson, L., 10.1006/jath.1996.3096, J. Approx. Theory 91 244-278 (1997). (1997) Zbl0904.32012MR1484043DOI10.1006/jath.1996.3096
  8. Gelfond, A. O., Calcul des Différences Finies, Collection Universitaire de Mathématiques 12 Dunod, Paris French (1963). (1963) MR0157139
  9. Genocchi, A., On the Maclaurin summation formula and interpolating functions, C. R. Acad. Sci., Paris, Sér. A 86 Italian 466-469 (1878). (1878) 
  10. Kergin, P., 10.1016/0021-9045(80)90116-1, J. Approx. Theory 29 278-293 (1980). (1980) MR0598722DOI10.1016/0021-9045(80)90116-1
  11. Kuo, H.-H., 10.1007/BFb0082008, Lecture Notes in Mathematics 463 Springer, Berlin (1975). (1975) Zbl0306.28010MR0461643DOI10.1007/BFb0082008
  12. Petersson, H., 10.4064/sm153-2-1, Stud. Math. 153 101-114 (2002). (2002) Zbl1085.46032MR1948919DOI10.4064/sm153-2-1
  13. Pinasco, D., Zalduendo, I., 10.1016/j.jmaa.2004.11.031, J. Math. Anal. Appl. 308 159-174 (2005). (2005) Zbl1086.46033MR2142411DOI10.1016/j.jmaa.2004.11.031
  14. Simon, S., 10.1016/j.jat.2008.04.006, J. Approx. Theory 154 181-186 (2008). (2008) Zbl1157.41001MR2474771DOI10.1016/j.jat.2008.04.006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.