Lagrange approximation in Banach spaces
Lisa Nilsson; Damián Pinasco; Ignacio M. Zalduendo
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 281-288
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNilsson, Lisa, Pinasco, Damián, and Zalduendo, Ignacio M.. "Lagrange approximation in Banach spaces." Czechoslovak Mathematical Journal 65.1 (2015): 281-288. <http://eudml.org/doc/270047>.
@article{Nilsson2015,
abstract = {Starting from Lagrange interpolation of the exponential function $\{\rm e\}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \rightarrow \mathbb \{C\}$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.},
author = {Nilsson, Lisa, Pinasco, Damián, Zalduendo, Ignacio M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lagrange interpolation; Lagrange approximation; Kergin interpolation; Kergin approximation; Banach space},
language = {eng},
number = {1},
pages = {281-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lagrange approximation in Banach spaces},
url = {http://eudml.org/doc/270047},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Nilsson, Lisa
AU - Pinasco, Damián
AU - Zalduendo, Ignacio M.
TI - Lagrange approximation in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 281
EP - 288
AB - Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \rightarrow \mathbb {C}$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.
LA - eng
KW - Lagrange interpolation; Lagrange approximation; Kergin interpolation; Kergin approximation; Banach space
UR - http://eudml.org/doc/270047
ER -
References
top- Andersson, M., Passare, M., 10.1016/0021-9045(91)90076-M, J. Approx. Theory 64 (1991), 214-225. (1991) Zbl0725.32011MR1091471DOI10.1016/0021-9045(91)90076-M
- Bloom, T., 10.1215/S0012-7094-81-04805-5, Duke Math. J. 48 (1981), 69-83. (1981) MR0610176DOI10.1215/S0012-7094-81-04805-5
- Boor, C. de, Divided differences, Surv. Approx. Theory 1 (2005), 46-69. (2005) Zbl1071.65027MR2221566
- Dineen, S., Nilsson, L., 10.1016/j.jmaa.2007.04.035, J. Math. Anal. Appl. 339 146-152 (2008). (2008) Zbl1134.46019MR2370639DOI10.1016/j.jmaa.2007.04.035
- Fernique, X., Intégrabilité des vecteurs Gaussiens, C. R. Acad. Sci., Paris, Sér. A 270 1698-1699 (1970), French. (1970) Zbl0206.19002MR0266263
- Filipsson, L., 10.1016/j.jat.2004.01.002, J. Approx. Theory 127 108-123 (2004). (2004) Zbl1043.41001MR2053536DOI10.1016/j.jat.2004.01.002
- Filipsson, L., 10.1006/jath.1996.3096, J. Approx. Theory 91 244-278 (1997). (1997) Zbl0904.32012MR1484043DOI10.1006/jath.1996.3096
- Gelfond, A. O., Calcul des Différences Finies, Collection Universitaire de Mathématiques 12 Dunod, Paris French (1963). (1963) MR0157139
- Genocchi, A., On the Maclaurin summation formula and interpolating functions, C. R. Acad. Sci., Paris, Sér. A 86 Italian 466-469 (1878). (1878)
- Kergin, P., 10.1016/0021-9045(80)90116-1, J. Approx. Theory 29 278-293 (1980). (1980) MR0598722DOI10.1016/0021-9045(80)90116-1
- Kuo, H.-H., 10.1007/BFb0082008, Lecture Notes in Mathematics 463 Springer, Berlin (1975). (1975) Zbl0306.28010MR0461643DOI10.1007/BFb0082008
- Petersson, H., 10.4064/sm153-2-1, Stud. Math. 153 101-114 (2002). (2002) Zbl1085.46032MR1948919DOI10.4064/sm153-2-1
- Pinasco, D., Zalduendo, I., 10.1016/j.jmaa.2004.11.031, J. Math. Anal. Appl. 308 159-174 (2005). (2005) Zbl1086.46033MR2142411DOI10.1016/j.jmaa.2004.11.031
- Simon, S., 10.1016/j.jat.2008.04.006, J. Approx. Theory 154 181-186 (2008). (2008) Zbl1157.41001MR2474771DOI10.1016/j.jat.2008.04.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.