On coincidence of Pettis and McShane integrability
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 83-106
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFabián, Marián J.. "On coincidence of Pettis and McShane integrability." Czechoslovak Mathematical Journal 65.1 (2015): 83-106. <http://eudml.org/doc/270052>.
@article{Fabián2015,
abstract = {R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.},
author = {Fabián, Marián J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation; Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation},
language = {eng},
number = {1},
pages = {83-106},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On coincidence of Pettis and McShane integrability},
url = {http://eudml.org/doc/270052},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Fabián, Marián J.
TI - On coincidence of Pettis and McShane integrability
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 83
EP - 106
AB - R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.
LA - eng
KW - Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation; Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation
UR - http://eudml.org/doc/270052
ER -
References
top- Argyros, S. A., Arvanitakis, A. D., Mercourakis, S. K., 10.1016/j.topol.2008.05.014, Topology Appl. 155 (2008), 1737-1755. (2008) Zbl1158.46011MR2437025DOI10.1016/j.topol.2008.05.014
- Argyros, S., Farmaki, V., 10.1090/S0002-9947-1985-0779073-9, Trans. Am. Math. Soc. 289 (1985), 409-427. (1985) Zbl0585.46010MR0779073DOI10.1090/S0002-9947-1985-0779073-9
- Argyros, S., Mercourakis, S., Negrepontis, S., 10.4064/sm-89-3-197-229, Stud. Math. 89 (1988), 197-229. (1988) Zbl0656.46014MR0956239DOI10.4064/sm-89-3-197-229
- Avilés, A., Plebanek, G., Rodríguez, J., 10.1016/j.jfa.2010.08.007, J. Funct. Anal. 259 (2010), 2776-2792. (2010) Zbl1213.46037MR2719274DOI10.1016/j.jfa.2010.08.007
- Benyamini, Y., Starbird, T., 10.1007/BF02756793, Isr. J. Math. 23 (1976), 137-141. (1976) Zbl0325.46023MR0397372DOI10.1007/BF02756793
- Číek, P., Fabian, M., Adequate compacta which are Gul'ko or Talagrand, Serdica Math. J. 29 (2003), 55-64. (2003) MR1981105
- Piazza, L. Di, Preiss, D., 10.1215/ijm/1258138098, J. Math. 47 (2003), 1177-1187. (2003) MR2036997DOI10.1215/ijm/1258138098
- Deville, R., Rodríguez, J., 10.1007/s11856-010-0047-4, Isr. J. Math. 177 (2010), 285-306. (2010) MR2684422DOI10.1007/s11856-010-0047-4
- Fabian, M. J., Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts Wiley, New York (1997). (1997) Zbl0883.46011MR1461271
- Fabian, M., Godefroy, G., Montesinos, V., Zizler, V., 10.1016/j.jmaa.2004.02.015, J. Math. Anal. Appl. 297 (2004), 419-455. (2004) Zbl1063.46013MR2088670DOI10.1016/j.jmaa.2004.02.015
- Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics Springer, Berlin (2011). (2011) Zbl1229.46001MR2766381
- Farmaki, V., 10.4064/fm-128-1-15-28, Fundam. Math. 128 (1987), 15-28. (1987) MR0919286DOI10.4064/fm-128-1-15-28
- Fremlin, D. H., Measure Theory Vol. 4. Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original, Torres Fremlin Colchester (2006). (2006) Zbl1166.28001MR2462372
- Fremlin, D. H., 10.1215/ijm/1255986628, Ill. J. Math. 39 (1995), 39-67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
- Hájek, P., Montesinos, V., Vanderwerff, J., Zizler, V., Biorthogonal Systems in Banach Spaces, CMS Books in Mathematics Springer, New York (2008). (2008) Zbl1136.46001MR2359536
- Leiderman, A. G., Sokolov, G. A., Adequate families of sets and Corson compacts, Commentat. Math. Univ. Carol. 25 (1984), 233-246. (1984) Zbl0586.54022MR0768810
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 92 Springer, Berlin (1977). (1977) Zbl0362.46013MR0500056
- Lukeš, J., Malý, J., Measure and Integral, Matfyzpress Praha (1995). (1995) Zbl0888.28001
- Marciszewski, W., 10.4064/sm-112-2-189-194, Stud. Math. 112 (1995), 189-194. (1995) Zbl0822.46004MR1311695DOI10.4064/sm-112-2-189-194
- Martin, D. A., Solovay, R. M., 10.1016/0003-4843(70)90009-4, Ann. Math. Logic 2 (1970), 143-178. (1970) Zbl0222.02075MR0270904DOI10.1016/0003-4843(70)90009-4
- Schwabik, Š., Ye, G., Topics in Banach Space Integration, Series in Real Analysis 10 World Scientific, Hackensack (2005). (2005) Zbl1088.28008MR2167754
- Talagrand, M., 10.2307/1971232, Ann. Math. 110 (1979), 407-438 French. (1979) MR0554378DOI10.2307/1971232
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.