On coincidence of Pettis and McShane integrability

Marián J. Fabián

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 1, page 83-106
  • ISSN: 0011-4642

Abstract

top
R. Deville and J. Rodríguez proved that, for every Hilbert generated space X , every Pettis integrable function f : [ 0 , 1 ] X is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space X and a scalarly null (hence Pettis integrable) function from [ 0 , 1 ] into X , which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from [ 0 , 1 ] (mostly) into C ( K ) spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces K , that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from [ 0 , 1 ] into C ( K ) in McShane sense.

How to cite

top

Fabián, Marián J.. "On coincidence of Pettis and McShane integrability." Czechoslovak Mathematical Journal 65.1 (2015): 83-106. <http://eudml.org/doc/270052>.

@article{Fabián2015,
abstract = {R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.},
author = {Fabián, Marián J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation; Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation},
language = {eng},
number = {1},
pages = {83-106},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On coincidence of Pettis and McShane integrability},
url = {http://eudml.org/doc/270052},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Fabián, Marián J.
TI - On coincidence of Pettis and McShane integrability
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 83
EP - 106
AB - R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.
LA - eng
KW - Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation; Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation
UR - http://eudml.org/doc/270052
ER -

References

top
  1. Argyros, S. A., Arvanitakis, A. D., Mercourakis, S. K., 10.1016/j.topol.2008.05.014, Topology Appl. 155 (2008), 1737-1755. (2008) Zbl1158.46011MR2437025DOI10.1016/j.topol.2008.05.014
  2. Argyros, S., Farmaki, V., 10.1090/S0002-9947-1985-0779073-9, Trans. Am. Math. Soc. 289 (1985), 409-427. (1985) Zbl0585.46010MR0779073DOI10.1090/S0002-9947-1985-0779073-9
  3. Argyros, S., Mercourakis, S., Negrepontis, S., 10.4064/sm-89-3-197-229, Stud. Math. 89 (1988), 197-229. (1988) Zbl0656.46014MR0956239DOI10.4064/sm-89-3-197-229
  4. Avilés, A., Plebanek, G., Rodríguez, J., 10.1016/j.jfa.2010.08.007, J. Funct. Anal. 259 (2010), 2776-2792. (2010) Zbl1213.46037MR2719274DOI10.1016/j.jfa.2010.08.007
  5. Benyamini, Y., Starbird, T., 10.1007/BF02756793, Isr. J. Math. 23 (1976), 137-141. (1976) Zbl0325.46023MR0397372DOI10.1007/BF02756793
  6. Číek, P., Fabian, M., Adequate compacta which are Gul'ko or Talagrand, Serdica Math. J. 29 (2003), 55-64. (2003) MR1981105
  7. Piazza, L. Di, Preiss, D., 10.1215/ijm/1258138098, J. Math. 47 (2003), 1177-1187. (2003) MR2036997DOI10.1215/ijm/1258138098
  8. Deville, R., Rodríguez, J., 10.1007/s11856-010-0047-4, Isr. J. Math. 177 (2010), 285-306. (2010) MR2684422DOI10.1007/s11856-010-0047-4
  9. Fabian, M. J., Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts Wiley, New York (1997). (1997) Zbl0883.46011MR1461271
  10. Fabian, M., Godefroy, G., Montesinos, V., Zizler, V., 10.1016/j.jmaa.2004.02.015, J. Math. Anal. Appl. 297 (2004), 419-455. (2004) Zbl1063.46013MR2088670DOI10.1016/j.jmaa.2004.02.015
  11. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics Springer, Berlin (2011). (2011) Zbl1229.46001MR2766381
  12. Farmaki, V., 10.4064/fm-128-1-15-28, Fundam. Math. 128 (1987), 15-28. (1987) MR0919286DOI10.4064/fm-128-1-15-28
  13. Fremlin, D. H., Measure Theory Vol. 4. Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original, Torres Fremlin Colchester (2006). (2006) Zbl1166.28001MR2462372
  14. Fremlin, D. H., 10.1215/ijm/1255986628, Ill. J. Math. 39 (1995), 39-67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
  15. Hájek, P., Montesinos, V., Vanderwerff, J., Zizler, V., Biorthogonal Systems in Banach Spaces, CMS Books in Mathematics Springer, New York (2008). (2008) Zbl1136.46001MR2359536
  16. Leiderman, A. G., Sokolov, G. A., Adequate families of sets and Corson compacts, Commentat. Math. Univ. Carol. 25 (1984), 233-246. (1984) Zbl0586.54022MR0768810
  17. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 92 Springer, Berlin (1977). (1977) Zbl0362.46013MR0500056
  18. Lukeš, J., Malý, J., Measure and Integral, Matfyzpress Praha (1995). (1995) Zbl0888.28001
  19. Marciszewski, W., 10.4064/sm-112-2-189-194, Stud. Math. 112 (1995), 189-194. (1995) Zbl0822.46004MR1311695DOI10.4064/sm-112-2-189-194
  20. Martin, D. A., Solovay, R. M., 10.1016/0003-4843(70)90009-4, Ann. Math. Logic 2 (1970), 143-178. (1970) Zbl0222.02075MR0270904DOI10.1016/0003-4843(70)90009-4
  21. Schwabik, Š., Ye, G., Topics in Banach Space Integration, Series in Real Analysis 10 World Scientific, Hackensack (2005). (2005) Zbl1088.28008MR2167754
  22. Talagrand, M., 10.2307/1971232, Ann. Math. 110 (1979), 407-438 French. (1979) MR0554378DOI10.2307/1971232

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.