Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 61-82
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYan, Xuefang. "Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces." Czechoslovak Mathematical Journal 65.1 (2015): 61-82. <http://eudml.org/doc/270061>.
@article{Yan2015,
abstract = {Let $(X, d, \mu )$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu $. Let $L$ be a non-negative self-adjoint operator of order $m$ on $L^2(X)$. Assume that the semigroup $\{\rm e\}^\{-tL\}$ generated by $L$ satisfies the Davies-Gaffney estimate of order $m$ and $L$ satisfies the Plancherel type estimate. Let $H^p_L(X)$ be the Hardy space associated with $L.$ We show the boundedness of Stein’s square function $\{\mathcal \{G\}\}_\{\delta \}(L)$ arising from Bochner-Riesz means associated to $L$ from Hardy spaces $H^p_L(X)$ to $L^\{p\}(X)$, and also study the boundedness of Bochner-Riesz means on Hardy spaces $H^p_L(X)$ for $0<p\le 1$.},
author = {Yan, Xuefang},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-negative self-adjoint operator; Stein's square function; Bochner-Riesz means; Davies-Gaffney estimate; molecule Hardy space},
language = {eng},
number = {1},
pages = {61-82},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces},
url = {http://eudml.org/doc/270061},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Yan, Xuefang
TI - Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 61
EP - 82
AB - Let $(X, d, \mu )$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu $. Let $L$ be a non-negative self-adjoint operator of order $m$ on $L^2(X)$. Assume that the semigroup ${\rm e}^{-tL}$ generated by $L$ satisfies the Davies-Gaffney estimate of order $m$ and $L$ satisfies the Plancherel type estimate. Let $H^p_L(X)$ be the Hardy space associated with $L.$ We show the boundedness of Stein’s square function ${\mathcal {G}}_{\delta }(L)$ arising from Bochner-Riesz means associated to $L$ from Hardy spaces $H^p_L(X)$ to $L^{p}(X)$, and also study the boundedness of Bochner-Riesz means on Hardy spaces $H^p_L(X)$ for $0<p\le 1$.
LA - eng
KW - non-negative self-adjoint operator; Stein's square function; Bochner-Riesz means; Davies-Gaffney estimate; molecule Hardy space
UR - http://eudml.org/doc/270061
ER -
References
top- Auscher, P., McIntosh, A., Russ, E., 10.1007/s12220-007-9003-x, J. Geom. Anal. 18 (2008), 192-248. (2008) Zbl1217.42043MR2365673DOI10.1007/s12220-007-9003-x
- Blunck, S., Kunstmann, P. C., Generalized Gaussian estimates and the Legendre transform, J. Oper. Theory 53 (2005), 351-365. (2005) Zbl1117.47020MR2153153
- Bui, T. A., Duong, X. T., Boundedness of singular integrals and their commutators with BMO functions on Hardy spaces, Adv. Differ. Equ. 18 (2013), 459-494. (2013) Zbl1275.42019MR3086462
- Chen, P., 10.4064/cm133-1-4, Colloq. Math. 133 (2013), 51-65. (2013) Zbl1291.42012MR3139415DOI10.4064/cm133-1-4
- Chen, P., Duong, X. T., Yan, L., 10.2969/jmsj/06520389, J. Math. Soc. Japan. 65 (2013), 389-409. (2013) Zbl1277.42011MR3055591DOI10.2969/jmsj/06520389
- Christ, M., bounds for spectral multipliers on nilpotent groups, Trans. Am. Math. Soc. 328 (1991), 73-81. (1991) MR1104196
- Coifman, R. R., Weiss, G., 10.1007/BFb0058946, Lecture Notes in Mathematics 242 Springer, Berlin (1971), French. (1971) Zbl0224.43006MR0499948DOI10.1007/BFb0058946
- Davies, E. B., 10.1006/jdeq.1996.3219, J. Differ. Equations 135 (1997), 83-102. (1997) MR1434916DOI10.1006/jdeq.1996.3219
- Duong, X. T., Li, J., 10.1016/j.jfa.2013.01.006, J. Funct. Anal. 264 (2013), 1409-1437. (2013) Zbl1271.42033MR3017269DOI10.1016/j.jfa.2013.01.006
- Duong, X. T., Ouhabaz, E. M., Sikora, A., 10.1016/S0022-1236(02)00009-5, J. Funct. Anal. 196 (2002), 443-485. (2002) MR1943098DOI10.1016/S0022-1236(02)00009-5
- Duong, X. T., Yan, L., 10.2969/jmsj/06310295, J. Math. Soc. Japan. 63 (2011), 295-319. (2011) Zbl1221.42024MR2752441DOI10.2969/jmsj/06310295
- Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Am. Math. Soc. 214 (2011), no. 1007, 78 pages. (2011) Zbl1232.42018MR2868142
- Hofmann, S., Mayboroda, S., 10.1007/s00208-008-0295-3, Math. Ann. 344 (2009), 37-116. (2009) Zbl1162.42012MR2481054DOI10.1007/s00208-008-0295-3
- Igari, S., 10.2748/tmj/1178243450, Tohoku Math. J., II. Ser. 18 (1966), 232-235. (1966) MR0199643DOI10.2748/tmj/1178243450
- Igari, S., Kuratsubo, S., 10.2140/pjm.1971.38.85, Pac. J. Math. 38 (1971), 85-88. (1971) MR0306793DOI10.2140/pjm.1971.38.85
- Kaneko, M., Sunouchi, G. I., 10.2748/tmj/1178228647, Tohoku. Math. J., II. Ser. 37 (1985), 343-365. (1985) Zbl0579.42011MR0799527DOI10.2748/tmj/1178228647
- Kunstmann, P. C., Uhl, M., Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces, Available at http://arXiv:1209.0358v1 (2012). (2012) MR3322756
- Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040
- Reed, M., Simon, B., Methods of Modern Mathematical Physics. I: Functional Analysis, Academic Press New York (1980). (1980) Zbl0459.46001MR0751959
- Schreieck, G., Voigt, J., Stability of the -spectrum of Schrödinger operators with form-small negative part of the potential, Functional Analysis K. D. Bierstedt et al. Proceedings of the Essen Conference, 1991. Lect. Notes Pure Appl. Math. 150 (1994), 95-105 Dekker, New York. (1994) MR1241673
- Stein, E. M., 10.1007/BF02559603, Acta Math. 100 (1958), 93-147. (1958) Zbl0085.28401MR0105592DOI10.1007/BF02559603
- Yosida, K., Functional Analysis, Grundlehren der Mathematischen Wissenschaften 123 Springer, Berlin (1978). (1978) Zbl0365.46001MR0500055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.