Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 1, page 61-82
  • ISSN: 0011-4642

Abstract

top
Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study the boundedness of Bochner-Riesz means on Hardy spaces H L p ( X ) for 0 < p 1 .

How to cite

top

Yan, Xuefang. "Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces." Czechoslovak Mathematical Journal 65.1 (2015): 61-82. <http://eudml.org/doc/270061>.

@article{Yan2015,
abstract = {Let $(X, d, \mu )$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu $. Let $L$ be a non-negative self-adjoint operator of order $m$ on $L^2(X)$. Assume that the semigroup $\{\rm e\}^\{-tL\}$ generated by $L$ satisfies the Davies-Gaffney estimate of order $m$ and $L$ satisfies the Plancherel type estimate. Let $H^p_L(X)$ be the Hardy space associated with $L.$ We show the boundedness of Stein’s square function $\{\mathcal \{G\}\}_\{\delta \}(L)$ arising from Bochner-Riesz means associated to $L$ from Hardy spaces $H^p_L(X)$ to $L^\{p\}(X)$, and also study the boundedness of Bochner-Riesz means on Hardy spaces $H^p_L(X)$ for $0<p\le 1$.},
author = {Yan, Xuefang},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-negative self-adjoint operator; Stein's square function; Bochner-Riesz means; Davies-Gaffney estimate; molecule Hardy space},
language = {eng},
number = {1},
pages = {61-82},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces},
url = {http://eudml.org/doc/270061},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Yan, Xuefang
TI - Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 61
EP - 82
AB - Let $(X, d, \mu )$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu $. Let $L$ be a non-negative self-adjoint operator of order $m$ on $L^2(X)$. Assume that the semigroup ${\rm e}^{-tL}$ generated by $L$ satisfies the Davies-Gaffney estimate of order $m$ and $L$ satisfies the Plancherel type estimate. Let $H^p_L(X)$ be the Hardy space associated with $L.$ We show the boundedness of Stein’s square function ${\mathcal {G}}_{\delta }(L)$ arising from Bochner-Riesz means associated to $L$ from Hardy spaces $H^p_L(X)$ to $L^{p}(X)$, and also study the boundedness of Bochner-Riesz means on Hardy spaces $H^p_L(X)$ for $0<p\le 1$.
LA - eng
KW - non-negative self-adjoint operator; Stein's square function; Bochner-Riesz means; Davies-Gaffney estimate; molecule Hardy space
UR - http://eudml.org/doc/270061
ER -

References

top
  1. Auscher, P., McIntosh, A., Russ, E., 10.1007/s12220-007-9003-x, J. Geom. Anal. 18 (2008), 192-248. (2008) Zbl1217.42043MR2365673DOI10.1007/s12220-007-9003-x
  2. Blunck, S., Kunstmann, P. C., Generalized Gaussian estimates and the Legendre transform, J. Oper. Theory 53 (2005), 351-365. (2005) Zbl1117.47020MR2153153
  3. Bui, T. A., Duong, X. T., Boundedness of singular integrals and their commutators with BMO functions on Hardy spaces, Adv. Differ. Equ. 18 (2013), 459-494. (2013) Zbl1275.42019MR3086462
  4. Chen, P., 10.4064/cm133-1-4, Colloq. Math. 133 (2013), 51-65. (2013) Zbl1291.42012MR3139415DOI10.4064/cm133-1-4
  5. Chen, P., Duong, X. T., Yan, L., 10.2969/jmsj/06520389, J. Math. Soc. Japan. 65 (2013), 389-409. (2013) Zbl1277.42011MR3055591DOI10.2969/jmsj/06520389
  6. Christ, M., L p bounds for spectral multipliers on nilpotent groups, Trans. Am. Math. Soc. 328 (1991), 73-81. (1991) MR1104196
  7. Coifman, R. R., Weiss, G., 10.1007/BFb0058946, Lecture Notes in Mathematics 242 Springer, Berlin (1971), French. (1971) Zbl0224.43006MR0499948DOI10.1007/BFb0058946
  8. Davies, E. B., 10.1006/jdeq.1996.3219, J. Differ. Equations 135 (1997), 83-102. (1997) MR1434916DOI10.1006/jdeq.1996.3219
  9. Duong, X. T., Li, J., 10.1016/j.jfa.2013.01.006, J. Funct. Anal. 264 (2013), 1409-1437. (2013) Zbl1271.42033MR3017269DOI10.1016/j.jfa.2013.01.006
  10. Duong, X. T., Ouhabaz, E. M., Sikora, A., 10.1016/S0022-1236(02)00009-5, J. Funct. Anal. 196 (2002), 443-485. (2002) MR1943098DOI10.1016/S0022-1236(02)00009-5
  11. Duong, X. T., Yan, L., 10.2969/jmsj/06310295, J. Math. Soc. Japan. 63 (2011), 295-319. (2011) Zbl1221.42024MR2752441DOI10.2969/jmsj/06310295
  12. Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Am. Math. Soc. 214 (2011), no. 1007, 78 pages. (2011) Zbl1232.42018MR2868142
  13. Hofmann, S., Mayboroda, S., 10.1007/s00208-008-0295-3, Math. Ann. 344 (2009), 37-116. (2009) Zbl1162.42012MR2481054DOI10.1007/s00208-008-0295-3
  14. Igari, S., 10.2748/tmj/1178243450, Tohoku Math. J., II. Ser. 18 (1966), 232-235. (1966) MR0199643DOI10.2748/tmj/1178243450
  15. Igari, S., Kuratsubo, S., 10.2140/pjm.1971.38.85, Pac. J. Math. 38 (1971), 85-88. (1971) MR0306793DOI10.2140/pjm.1971.38.85
  16. Kaneko, M., Sunouchi, G. I., 10.2748/tmj/1178228647, Tohoku. Math. J., II. Ser. 37 (1985), 343-365. (1985) Zbl0579.42011MR0799527DOI10.2748/tmj/1178228647
  17. Kunstmann, P. C., Uhl, M., Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces, Available at http://arXiv:1209.0358v1 (2012). (2012) MR3322756
  18. Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040
  19. Reed, M., Simon, B., Methods of Modern Mathematical Physics. I: Functional Analysis, Academic Press New York (1980). (1980) Zbl0459.46001MR0751959
  20. Schreieck, G., Voigt, J., Stability of the L p -spectrum of Schrödinger operators with form-small negative part of the potential, Functional Analysis K. D. Bierstedt et al. Proceedings of the Essen Conference, 1991. Lect. Notes Pure Appl. Math. 150 (1994), 95-105 Dekker, New York. (1994) MR1241673
  21. Stein, E. M., 10.1007/BF02559603, Acta Math. 100 (1958), 93-147. (1958) Zbl0085.28401MR0105592DOI10.1007/BF02559603
  22. Yosida, K., Functional Analysis, Grundlehren der Mathematischen Wissenschaften 123 Springer, Berlin (1978). (1978) Zbl0365.46001MR0500055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.