Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions
Yousef Edrisi Tabriz; Mehrdad Lakestani
Kybernetika (2015)
- Volume: 51, Issue: 1, page 81-98
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topEdrisi Tabriz, Yousef, and Lakestani, Mehrdad. "Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions." Kybernetika 51.1 (2015): 81-98. <http://eudml.org/doc/270062>.
@article{EdrisiTabriz2015,
abstract = {In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon B-spline functions. The properties of B-spline functions are presented. The operational matrix of derivative ($\mathbf \{D\}_\phi $) and integration matrix ($\mathbf \{P\}$) are introduced. These matrices are utilized to reduce the solution of nonlinear constrained quadratic optimal control to the solution of nonlinear programming one to which existing well-developed algorithms may be applied. Illustrative examples are included to demonstrate the validity and applicability of the technique.},
author = {Edrisi Tabriz, Yousef, Lakestani, Mehrdad},
journal = {Kybernetika},
keywords = {optimal control problem; B-spline functions; derivative matrix; collocation method; optimal control problem; B-spline functions; derivative matrix; collocation method},
language = {eng},
number = {1},
pages = {81-98},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions},
url = {http://eudml.org/doc/270062},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Edrisi Tabriz, Yousef
AU - Lakestani, Mehrdad
TI - Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 81
EP - 98
AB - In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon B-spline functions. The properties of B-spline functions are presented. The operational matrix of derivative ($\mathbf {D}_\phi $) and integration matrix ($\mathbf {P}$) are introduced. These matrices are utilized to reduce the solution of nonlinear constrained quadratic optimal control to the solution of nonlinear programming one to which existing well-developed algorithms may be applied. Illustrative examples are included to demonstrate the validity and applicability of the technique.
LA - eng
KW - optimal control problem; B-spline functions; derivative matrix; collocation method; optimal control problem; B-spline functions; derivative matrix; collocation method
UR - http://eudml.org/doc/270062
ER -
References
top- Betts, J., 10.1007/978-3-0348-8497-6_1, In: Computational Optimal Control (R. Bulirsch and D. Kraft, eds.), Birkhauser, 1994, pp. 3-17. MR1287613DOI10.1007/978-3-0348-8497-6_1
- Betts, J., 10.2514/2.4231, J. Guidance, Control, and Dynamics 21 (1998), 193-207. Zbl1158.49303DOI10.2514/2.4231
- Boor, C. De., A Practical Guide to Spline., Springer-Verlag, New York 1978. MR0507062
- Elnegar, G. N., Kazemi, M. A., 10.1023/A:1018694111831, Comput. Optim. Appl. 11 (1998), 195-217. MR1652069DOI10.1023/A:1018694111831
- Foroozandeh, Z., Shamsi, M., 10.1016/j.actaastro.2011.10.004, Acta Astronautica 72 (2012), 21-26. DOI10.1016/j.actaastro.2011.10.004
- Gong, Q., Kang, W., Ross, I. M., 10.1109/tac.2006.878570, IEEE Trans. Automat. Control 51 (2006), 1115-1129. MR2238794DOI10.1109/tac.2006.878570
- Goswami, J. C., Chan, A. K., 10.1002/9780470926994, John Wiley and Sons Inc. 1999. Zbl1214.65071MR2799281DOI10.1002/9780470926994
- Jaddu, H., 10.1016/s0016-0032(02)00028-5, J. Franklin Inst. 339 (2002), 479-498. Zbl1010.93507MR1931507DOI10.1016/s0016-0032(02)00028-5
- Jaddu, H., Shimemura, E., 10.1002/(sici)1099-1514(199901/02)20:1<21::aid-oca644>3.3.co;2-4, Optimal Control Appl. Methods 20 (1999), 21-42. MR1690446DOI10.1002/(sici)1099-1514(199901/02)20:1<21::aid-oca644>3.3.co;2-4
- Lancaster, P., Theory of Matrices., Academic Press, New York 1969. Zbl0558.15001MR0245579
- Lakestani, M., Dehghan, M., Irandoust-Pakchin, S., 10.1016/j.cnsns.2011.07.018, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3, 1149-1162. Zbl1276.65015MR2843781DOI10.1016/j.cnsns.2011.07.018
- Lakestani, M., Razzaghi, M., Dehghan, M., 10.1155/mpe.2005.113, Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2005), 113-121. Zbl1073.65568MR2144111DOI10.1155/mpe.2005.113
- Lakestani, M., Razzaghi, M., Dehghan, M., 10.1155/mpe/2006/96184, Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2006), 1-12. Zbl1200.65112DOI10.1155/mpe/2006/96184
- Marzban, H. R., Razzaghi, M., 10.1016/s0307-904x(03)00050-7, Appl. Math. Modell. 27 (2003), 471-485. Zbl1020.49025DOI10.1016/s0307-904x(03)00050-7
- Marzban, H. R., Razzaghi, M., 10.1016/j.apm.2009.03.036, Appl. Math. Modell. 34 (2010), 174-183. MR2566686DOI10.1016/j.apm.2009.03.036
- Marzban, H. R., Hoseini, S. M., 10.1016/j.cnsns.2012.10.012, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1347-1361. Zbl1282.65075MR3016889DOI10.1016/j.cnsns.2012.10.012
- Mashayekhi, S., Ordokhani, Y., Razzaghi, M., 10.1016/j.cnsns.2011.09.008, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1831-1843. Zbl1239.49043MR2855473DOI10.1016/j.cnsns.2011.09.008
- Mehra, R. K., Davis, R. E., 10.1109/tac.1972.1099881, IEEE Trans. Automat. Control 17 (1972), 69-72. Zbl0268.49038DOI10.1109/tac.1972.1099881
- Ordokhani, Y., Razzaghi, M., Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions., Dynam. Contin. Discrete Impuls. Syst. Ser. B 12 (2005), 761-773. Zbl1081.49026MR2179602
- Powell, M. J. D., 10.1093/comjnl/7.2.155, Comput. J. 7 (1964), 155-162. MR0187376DOI10.1093/comjnl/7.2.155
- Razzaghi, M., Elnagar, G., 10.1080/00207729408928967, Int. J. Systems Sci. 25 (1994), 393-399. MR1262503DOI10.1080/00207729408928967
- Schittkowskki, K., 10.1007/bf02022087, Ann. Oper. Res. 5 (1986), 2, 485-500. MR0948031DOI10.1007/bf02022087
- Schumaker, L., Spline Functions: Basic Theory., Cambridge University Press, 2007. Zbl1123.41008MR2348176
- Teo, K. L., Wong, K. H., 10.1017/s0334270000007207, J. Austral. Math. Soc. Ser. B 33 (1992), 507-530. Zbl0764.49017MR1154823DOI10.1017/s0334270000007207
- Vlassenbroeck, J., 10.1016/0005-1098(88)90094-5, Automatica 24 (1988), 499-506. MR0956571DOI10.1016/0005-1098(88)90094-5
- Yen, V., Nagurka, M., 10.1115/1.2896367, J. Dynam. Syst. Measure Control 11 (1991), 206-215. DOI10.1115/1.2896367
- Yen, V., Nagurka, M., 10.1002/oca.4660130206, Optimal Control Appl. Methods 13 (1992), 155-167. MR1197736DOI10.1002/oca.4660130206
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.