The product-decomposability of probability measures on Abelian metrizable groups

Krakowiak Wiesław

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1996

Abstract

top
Introduction.............................................................5I. Preliminaries.........................................................6   1.1. Semigroups........................................7   1.2. Algebraic groups..................................7   1.3. Additive operators in Abelian groups and linear operators in linear spaces................................8   1.4. Abelian metrizable groups........................10   1.5. Locally compact Abelian groups...................13   1.6. Transformation groups............................15   1.7. Locally convex spaces............................16   1.8. The space ..................................18II. Basic properties of probability measures............................19   2.1. Probability measures on metrizable spaces................................19   2.2. Probability measures on transformation groups............................20   2.3. Probability measures on Abelian metrizable groups........................22   2.4. Invariant subgroups of probability measures..............................26III. Borel decomposability semigroups of probability measures...................................29   3.1. Additive measurable operators in Abelian metrizable groups...............29   3.2. Borel decomposability semigroups of probability measures.................33   3.3. Additive projections in Borel decomposability semigroups of probability measures.........................35   3.4. Additive projections in Borel decomposability semigroups of probability measures without idempotent factors....................................41IV. Product-decomposability of probability measures.....................46   4.1. Basic definitions and results....................46   4.2. Gaussian measures in the sense of Gnedenko...............................47   4.3. Gaussian measures in the sense of Gnedenko without idempotent factors....49   4.4. Product-atoms in Borel decomposability semigroups of probability measures without idempotent factors.....55   4.5. Product-atomless probability measures without idempotent factors.........57   4.6. Canonical product-decomposition of probability measures..................60V. Product-decomposability of probability measures on locally convex metrizable spaces..........61   5.1. Strong product-decomposability of probability measures on metrizable linear spaces.......................61   5.2. Infinitely divisible probability measures on locally convex metrizable spaces............................65   5.3. Gaussian measures on locally convex metrizable spaces....................67   5.4. Product-atomless probability measures on locally convex metrizable spaces................................71   5.5. Canonical product-decomposition and canonical strong product-decomposition of probability measures on locally convex metrizable spaces.........72VI. Product decomposability of probability measures on LCA metrizable groups....................73   6.1. Initial results on probability measures..........73   6.2. Gaussian measures................................76   6.3. Product-atomless probability measures............78   6.4. Canonical product-decomposition of probability measures..................80References..............................................................81Index of symbols........................................................83Subject index...........................................................851991 Mathematics Subject Classification: 60B11, 60B15, 60E99.

How to cite

top

Krakowiak Wiesław. The product-decomposability of probability measures on Abelian metrizable groups. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/270066>.

@book{KrakowiakWiesław1996,
author = {Krakowiak Wiesław},
keywords = {Abelian metrizable group; probability measure; decomposability of measures; product-atomic; product-indecomposable; product-decomposable; Khinchin factorization theorem},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The product-decomposability of probability measures on Abelian metrizable groups},
url = {http://eudml.org/doc/270066},
year = {1996},
}

TY - BOOK
AU - Krakowiak Wiesław
TI - The product-decomposability of probability measures on Abelian metrizable groups
PY - 1996
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
LA - eng
KW - Abelian metrizable group; probability measure; decomposability of measures; product-atomic; product-indecomposable; product-decomposable; Khinchin factorization theorem
UR - http://eudml.org/doc/270066
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.