Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
Abbas Moradi; Karim Hedayatian; Bahram Khani Robati; Mohammad Ansari
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 389-397
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMoradi, Abbas, et al. "Non supercyclic subsets of linear isometries on Banach spaces of analytic functions." Czechoslovak Mathematical Journal 65.2 (2015): 389-397. <http://eudml.org/doc/270095>.
@article{Moradi2015,
abstract = {Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma $ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma $. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^\{p\}_\{a\}$ ($1<p<\infty $, $p\ne 2$) are not supercyclic.},
author = {Moradi, Abbas, Hedayatian, Karim, Khani Robati, Bahram, Ansari, Mohammad},
journal = {Czechoslovak Mathematical Journal},
keywords = {supercyclicity; hypercyclic operator; semigroup; isometry},
language = {eng},
number = {2},
pages = {389-397},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non supercyclic subsets of linear isometries on Banach spaces of analytic functions},
url = {http://eudml.org/doc/270095},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Moradi, Abbas
AU - Hedayatian, Karim
AU - Khani Robati, Bahram
AU - Ansari, Mohammad
TI - Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 389
EP - 397
AB - Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma $ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma $. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^{p}_{a}$ ($1<p<\infty $, $p\ne 2$) are not supercyclic.
LA - eng
KW - supercyclicity; hypercyclic operator; semigroup; isometry
UR - http://eudml.org/doc/270095
ER -
References
top- Ansari, S. I., 10.1006/jfan.1995.1036, J. Funct. Anal. 128 (1995), 374-383. (1995) Zbl0853.47013MR1319961DOI10.1006/jfan.1995.1036
- Bayart, F., Matheron, É., Dynamics of Linear Operators, Cambridge Tracts in Mathematics 179 Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318
- Guerrero, J. Becerra, Rodríguez-Palacios, A., Transitivity of the norm on Banach spaces, Extr. Math. 17 (2002), 1-58. (2002) MR1914238
- Bonet, J., Lindström, M., Wolf, E., 10.1090/S0002-9939-08-09631-7, Proc. Am. Math. Soc. 136 (2008), 4267-4273. (2008) Zbl1154.47017MR2431039DOI10.1090/S0002-9939-08-09631-7
- Bourdon, P. S., Feldman, N. S., 10.1512/iumj.2003.52.2303, Indiana Univ. Math. J. 52 (2003), 811-819. (2003) Zbl1049.47002MR1986898DOI10.1512/iumj.2003.52.2303
- Conejero, J. A., Müller, V., Peris, A., 10.1016/j.jfa.2006.12.008, J. Funct. Anal. 244 (2007), 342-348. (2007) Zbl1123.47010MR2294487DOI10.1016/j.jfa.2006.12.008
- Conway, J. B., 10.1007/978-1-4612-6313-5, Graduate Texts in Mathematics 11 Springer, New York (1978). (1978) MR0503901DOI10.1007/978-1-4612-6313-5
- Copson, E. T., Asymptotic Expansions, Cambridge Tracts in Mathematics and Mathematical Physics 55 Cambridge University Press, New York (1965). (1965) Zbl0123.26001MR0168979
- Fleming, R. J., Jamison, J. E., Isometries on Banach Spaces. Vol. 2: Vector-valued Function Spaces, Monographs and Surveys in Pure and Applied Mathematics 138 Chapman and Hall/CRC, Boca Raton (2007). (2007) MR2361284
- Fleming, R. J., Jamison, J. E., Isometries on Banach Spaces. Vol. 1: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). (2003) MR1957004
- Geng, L.-G., Zhou, Z.-H., Dong, X.-T., Isometric composition operators on weighted Dirichlet-type spaces, J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 23, 6 pages. (2012) Zbl1273.47049MR2916341
- Greim, P., Jamison, J. E., Kamińska, A., 10.1017/S0305004100072753, Math. Proc. Camb. Philos. Soc. 116 (1994), 475-488 corrigendum ibid. 121 191 (1997). (1997) MR1291754DOI10.1017/S0305004100072753
- Hornor, W., Jamison, J. E., 10.1007/BF01202102, Integral Equations Oper. Theory 41 (2001), 410-425. (2001) Zbl0995.46012MR1857800DOI10.1007/BF01202102
- Jarosz, K., 10.1007/BF02767369, Isr. J. Math. 64 (1988), 49-56. (1988) Zbl0682.46010MR0981748DOI10.1007/BF02767369
- Kitai, C., Invariant Closed Sets for Linear Operators, ProQuest LLC, Ann Arbor University of Toronto Toronto, Canada (1982). (1982) MR2632793
- León-Saavedra, F., Müller, V., 10.1007/s00020-003-1299-8, Integral Equations Oper. Theory 50 (2004), 385-391. (2004) Zbl1079.47013MR2104261DOI10.1007/s00020-003-1299-8
- Martín, M. J., Vukotić, D., Isometries of some classical function spaces among the composition operators, Recent Advances in Operator-Related Function Theory, Proc. Conf., Dublin, Ireland, 2004 A. L. Matheson et al. Contemp. Math. 393 American Mathematical Society, Providence (2006), 133-138. (2006) Zbl1121.47018MR2198376
- Novinger, W. P., Oberlin, D. M., 10.4153/CJM-1985-005-3, Can. J. Math. 37 (1985), 62-74. (1985) Zbl0581.46045MR0777039DOI10.4153/CJM-1985-005-3
- Rolewicz, S., 10.4064/sm-32-1-17-22, Stud. Math. 32 (1969), 17-22. (1969) Zbl0174.44203MR0241956DOI10.4064/sm-32-1-17-22
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.