On solvability of finite groups with some -supplemented subgroups
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 427-433
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLu, Jiakuan, and Qiu, Yanyan. "On solvability of finite groups with some $ss$-supplemented subgroups." Czechoslovak Mathematical Journal 65.2 (2015): 427-433. <http://eudml.org/doc/270115>.
@article{Lu2015,
abstract = {A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature.},
author = {Lu, Jiakuan, Qiu, Yanyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {$ss$-supplemented subgroup; solvable group; supersolvable group},
language = {eng},
number = {2},
pages = {427-433},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On solvability of finite groups with some $ss$-supplemented subgroups},
url = {http://eudml.org/doc/270115},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Lu, Jiakuan
AU - Qiu, Yanyan
TI - On solvability of finite groups with some $ss$-supplemented subgroups
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 427
EP - 433
AB - A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature.
LA - eng
KW - $ss$-supplemented subgroup; solvable group; supersolvable group
UR - http://eudml.org/doc/270115
ER -
References
top- Arad, Z., Ward, M. B., 10.1016/0021-8693(82)90288-5, J. Algebra 77 (1982), 234-246. (1982) Zbl0486.20018MR0665175DOI10.1016/0021-8693(82)90288-5
- Asaad, M., Ramadan, M., 10.1080/00927870701776805, Commun. Algebra 36 (2008), 1034-1040. (2008) Zbl1156.20017MR2394268DOI10.1080/00927870701776805
- Ballester-Bolinches, A., Wang, Y., Xiuyun, G., 10.1017/S001708950003007X, Glasg. Math. J. 42 (2000), 383-389. (2000) Zbl0968.20009MR1793807DOI10.1017/S001708950003007X
- Ballester-Bolinches, A., Xiuyun, G., 10.1007/s000130050317, Arch. Math. 72 (1999), 161-166. (1999) Zbl0929.20015MR1671273DOI10.1007/s000130050317
- Doerk, K., Hawkes, T. O., Finite Soluble Groups, de Gruyter Expositions in Mathematics 4 Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099
- Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics Harper & Row, Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
- Guo, X., Lu, J., 10.1017/S0017089512000079, Glasg. Math. J. 54 (2012), 481-491. (2012) Zbl1256.20018MR2965394DOI10.1017/S0017089512000079
- Guralnick, R. M., 10.1016/0021-8693(83)90190-4, J. Algebra 81 (1983), 304-311. (1983) Zbl0515.20011MR0700286DOI10.1016/0021-8693(83)90190-4
- Hall, P., 10.1112/jlms/s1-12.2.198, J. Lond. Math. Soc. 12 (1937), 198-200. (1937) Zbl0016.39204MR1575073DOI10.1112/jlms/s1-12.2.198
- Hall, P., 10.1112/jlms/s1-12.2.201, J. Lond. Math. Soc. 12 (1937), 201-204. (1937) Zbl0016.39301MR1575074DOI10.1112/jlms/s1-12.2.201
- Heliel, A. A., 10.1080/00927872.2012.747599, Commun. Algebra 42 (2014), 1650-1656. (2014) MR3169659DOI10.1080/00927872.2012.747599
- Huppert, B., Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703
- Kegel, O. H., 10.1007/BF01195169, Math. Z. 78 German (1962), 205-221. (1962) Zbl0102.26802MR0147527DOI10.1007/BF01195169
- Li, S., Shen, Z., Liu, J., Liu, X., 10.1016/j.jalgebra.2008.01.030, J. Algebra 319 (2008), 4275-4287. (2008) Zbl1152.20019MR2407900DOI10.1016/j.jalgebra.2008.01.030
- Li, Y., Li, B., 10.1142/S021949881100494X, J. Algebra Appl. 10 (2011), 811-820. (2011) Zbl1237.20020MR2847499DOI10.1142/S021949881100494X
- Lu, J., Guo, X., Li, X., The influence of minimal subgroups on the structure of finite groups, J. Algebra Appl. 12 (2013), Article No. 1250189, 8 pages. (2013) Zbl1270.20020MR3037264
- Schmid, P., 10.1006/jabr.1998.7429, J. Algebra 207 (1998), 285-293. (1998) Zbl0910.20015MR1643106DOI10.1006/jabr.1998.7429
- Wang, Y., 10.1006/jabr.1999.8079, J. Algebra 224 (2000), 467-478. (2000) Zbl0953.20010MR1739589DOI10.1006/jabr.1999.8079
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.