On solvability of finite groups with some s s -supplemented subgroups

Jiakuan Lu; Yanyan Qiu

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 427-433
  • ISSN: 0011-4642

Abstract

top
A subgroup H of a finite group G is said to be s s -supplemented in G if there exists a subgroup K of G such that G = H K and H K is s -permutable in K . In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group G is solvable if every subgroup of odd prime order of G is s s -supplemented in G , and that G is solvable if and only if every Sylow subgroup of odd order of G is s s -supplemented in G . These results improve and extend recent and classical results in the literature.

How to cite

top

Lu, Jiakuan, and Qiu, Yanyan. "On solvability of finite groups with some $ss$-supplemented subgroups." Czechoslovak Mathematical Journal 65.2 (2015): 427-433. <http://eudml.org/doc/270115>.

@article{Lu2015,
abstract = {A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature.},
author = {Lu, Jiakuan, Qiu, Yanyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {$ss$-supplemented subgroup; solvable group; supersolvable group},
language = {eng},
number = {2},
pages = {427-433},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On solvability of finite groups with some $ss$-supplemented subgroups},
url = {http://eudml.org/doc/270115},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Lu, Jiakuan
AU - Qiu, Yanyan
TI - On solvability of finite groups with some $ss$-supplemented subgroups
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 427
EP - 433
AB - A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature.
LA - eng
KW - $ss$-supplemented subgroup; solvable group; supersolvable group
UR - http://eudml.org/doc/270115
ER -

References

top
  1. Arad, Z., Ward, M. B., 10.1016/0021-8693(82)90288-5, J. Algebra 77 (1982), 234-246. (1982) Zbl0486.20018MR0665175DOI10.1016/0021-8693(82)90288-5
  2. Asaad, M., Ramadan, M., 10.1080/00927870701776805, Commun. Algebra 36 (2008), 1034-1040. (2008) Zbl1156.20017MR2394268DOI10.1080/00927870701776805
  3. Ballester-Bolinches, A., Wang, Y., Xiuyun, G., 10.1017/S001708950003007X, Glasg. Math. J. 42 (2000), 383-389. (2000) Zbl0968.20009MR1793807DOI10.1017/S001708950003007X
  4. Ballester-Bolinches, A., Xiuyun, G., 10.1007/s000130050317, Arch. Math. 72 (1999), 161-166. (1999) Zbl0929.20015MR1671273DOI10.1007/s000130050317
  5. Doerk, K., Hawkes, T. O., Finite Soluble Groups, de Gruyter Expositions in Mathematics 4 Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099
  6. Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics Harper & Row, Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
  7. Guo, X., Lu, J., 10.1017/S0017089512000079, Glasg. Math. J. 54 (2012), 481-491. (2012) Zbl1256.20018MR2965394DOI10.1017/S0017089512000079
  8. Guralnick, R. M., 10.1016/0021-8693(83)90190-4, J. Algebra 81 (1983), 304-311. (1983) Zbl0515.20011MR0700286DOI10.1016/0021-8693(83)90190-4
  9. Hall, P., 10.1112/jlms/s1-12.2.198, J. Lond. Math. Soc. 12 (1937), 198-200. (1937) Zbl0016.39204MR1575073DOI10.1112/jlms/s1-12.2.198
  10. Hall, P., 10.1112/jlms/s1-12.2.201, J. Lond. Math. Soc. 12 (1937), 201-204. (1937) Zbl0016.39301MR1575074DOI10.1112/jlms/s1-12.2.201
  11. Heliel, A. A., 10.1080/00927872.2012.747599, Commun. Algebra 42 (2014), 1650-1656. (2014) MR3169659DOI10.1080/00927872.2012.747599
  12. Huppert, B., Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703
  13. Kegel, O. H., 10.1007/BF01195169, Math. Z. 78 German (1962), 205-221. (1962) Zbl0102.26802MR0147527DOI10.1007/BF01195169
  14. Li, S., Shen, Z., Liu, J., Liu, X., 10.1016/j.jalgebra.2008.01.030, J. Algebra 319 (2008), 4275-4287. (2008) Zbl1152.20019MR2407900DOI10.1016/j.jalgebra.2008.01.030
  15. Li, Y., Li, B., 10.1142/S021949881100494X, J. Algebra Appl. 10 (2011), 811-820. (2011) Zbl1237.20020MR2847499DOI10.1142/S021949881100494X
  16. Lu, J., Guo, X., Li, X., The influence of minimal subgroups on the structure of finite groups, J. Algebra Appl. 12 (2013), Article No. 1250189, 8 pages. (2013) Zbl1270.20020MR3037264
  17. Schmid, P., 10.1006/jabr.1998.7429, J. Algebra 207 (1998), 285-293. (1998) Zbl0910.20015MR1643106DOI10.1006/jabr.1998.7429
  18. Wang, Y., 10.1006/jabr.1999.8079, J. Algebra 224 (2000), 467-478. (2000) Zbl0953.20010MR1739589DOI10.1006/jabr.1999.8079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.