Correct solvability of a general differential equation of the first order in the space
N. Chernyavskaya; L.A. Shuster
Archivum Mathematicum (2015)
- Volume: 051, Issue: 2, page 87-105
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topChernyavskaya, N., and Shuster, L.A.. "Correct solvability of a general differential equation of the first order in the space $L_p(\mathbb {R})$." Archivum Mathematicum 051.2 (2015): 87-105. <http://eudml.org/doc/270119>.
@article{Chernyavskaya2015,
abstract = {We consider the equation \begin\{equation\} - r(x)y^\{\prime \}(x)+q(x)y(x)=f(x)\,,\quad x\in \mathbb \{R\} \end\{equation\}
where $f\in L_p(\mathbb \{R\}) $, $p\in [1,\infty ]$ ($L_\infty (\mathbb \{R\}):=C(\mathbb \{R\})$) and \begin\{equation\} 0<r\in C^\{\}(\mathbb \{R\})\,,\quad 0\le q\in L\_1^\{\}(\mathbb \{R\})\,. \end\{equation\}
We obtain minimal requirements to the functions $r$ and $q$, in addition to (), under which equation () is correctly solvable in $L_p(\mathbb \{R\})$, $p\in [1,\infty ]$.},
author = {Chernyavskaya, N., Shuster, L.A.},
journal = {Archivum Mathematicum},
keywords = {correct solvability; differential equation of the first order},
language = {eng},
number = {2},
pages = {87-105},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Correct solvability of a general differential equation of the first order in the space $L_p(\mathbb \{R\})$},
url = {http://eudml.org/doc/270119},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Chernyavskaya, N.
AU - Shuster, L.A.
TI - Correct solvability of a general differential equation of the first order in the space $L_p(\mathbb {R})$
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 2
SP - 87
EP - 105
AB - We consider the equation \begin{equation} - r(x)y^{\prime }(x)+q(x)y(x)=f(x)\,,\quad x\in \mathbb {R} \end{equation}
where $f\in L_p(\mathbb {R}) $, $p\in [1,\infty ]$ ($L_\infty (\mathbb {R}):=C(\mathbb {R})$) and \begin{equation} 0<r\in C^{}(\mathbb {R})\,,\quad 0\le q\in L_1^{}(\mathbb {R})\,. \end{equation}
We obtain minimal requirements to the functions $r$ and $q$, in addition to (), under which equation () is correctly solvable in $L_p(\mathbb {R})$, $p\in [1,\infty ]$.
LA - eng
KW - correct solvability; differential equation of the first order
UR - http://eudml.org/doc/270119
ER -
References
top- Chernyavskaya, N., 10.1002/1522-2616(200209)243:1<5::AID-MANA5>3.0.CO;2-B, Math. Nachr. 243 (2002), 5–18. (2002) Zbl1028.34018MR1923831DOI10.1002/1522-2616(200209)243:1<5::AID-MANA5>3.0.CO;2-B
- Chernyavskaya, N., Shuster, L., 10.4171/ZAA/1285, Z. Anal. Anwendungen 25 (2006), 205–235. (2006) Zbl1122.34021MR2229446DOI10.4171/ZAA/1285
- Chernyavskaya, N., Shuster, L., 10.4171/ZAA/1334, Z. Anal. Anwendungen 26 (2007), 439–458. (2007) Zbl1139.34010MR2341766DOI10.4171/ZAA/1334
- Kantorovich, L.W., Akilov, G.P., Functional Analysis, Nauka, Moscow, 1977. (1977) MR0511615
- Lukachev, M., Shuster, L., On uniqueness of soltuion of a linear differential equation without boundary conditions, Funct. Differ. Equ. 14 (2007), 337–346. (2007) MR2323215
- Mynbaev, K., Otelbaev, M., Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. (1988) MR0950172
- Opic, B., Kufner, A., Hardy Type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Harlow, Longman, 1990. (1990) Zbl0698.26007MR1069756
- Otelbaev, M., Estimates of the Spectrum of the Sturm-Liouville Operator, Alma-Ata, Gilim, 1990, in Russian. (1990) Zbl0747.47029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.