Global behavior of the difference equation x n + 1 = a x n - 3 b + c x n - 1 x n - 3

Raafat Abo-Zeid

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 2, page 77-85
  • ISSN: 0044-8753

Abstract

top
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation x n + 1 = a x n - 3 b + c x n - 1 x n - 3 , n = 0 , 1 , where a , b , c are positive real numbers and the initial conditions x - 3 , x - 2 , x - 1 , x 0 are real numbers.

How to cite

top

Abo-Zeid, Raafat. "Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$." Archivum Mathematicum 051.2 (2015): 77-85. <http://eudml.org/doc/270130>.

@article{Abo2015,
abstract = {In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x\_\{n+1\}=\frac\{ax\_\{n-3\} \}\{b+ cx\_\{n-1\}x\_\{n-3\}\}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_\{-3\}$, $x_\{-2\}$, $x_\{-1\}$, $x_0$ are real numbers.},
author = {Abo-Zeid, Raafat},
journal = {Archivum Mathematicum},
keywords = {difference equation; periodic solution; convergence},
language = {eng},
number = {2},
pages = {77-85},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Global behavior of the difference equation $x_\{n+1\}=\frac\{ax_\{n-3\} \}\{b+ cx_\{n-1\}x_\{n-3\}\}$},
url = {http://eudml.org/doc/270130},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Abo-Zeid, Raafat
TI - Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 2
SP - 77
EP - 85
AB - In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers.
LA - eng
KW - difference equation; periodic solution; convergence
UR - http://eudml.org/doc/270130
ER -

References

top
  1. Abo-Zeid, R., Global asymptotic stability of a higher order difference equation, Bull. Allahabad Math. Soc. 2 (2) (2010), 341–351. (2010) Zbl1227.39015MR2779248
  2. Abo-Zeid, R., Global asymptotic stability of a second order rational difference equation, J. Appl. Math. & Inform. 2 (3) (2010), 797–804. (2010) Zbl1294.39010MR2779248
  3. Agarwal, R.P., Difference Equations and Inequalities, first ed., Marcel Decker, 1992. (1992) Zbl0925.39001MR1155840
  4. Al-Shabi, M.A., Abo-Zeid, R., Global asymptotic stability of a higher order difference equation, Appl. Math. Sci. 4 (17) (2010), 839–847. (2010) Zbl1198.39025MR2595521
  5. Camouzis, E., Ladas, G., Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008. (2008) Zbl1129.39002MR2363297
  6. Elsayed, E.M., On the difference equation x n + 1 = x n - 5 - 1 + x n - 2 x n - 5 , Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664. (2008) Zbl1172.39009MR2511022
  7. Elsayed, E.M., On the solution of some difference equations, European J. Pure Appl. Math. 4 (2011), 287–303. (2011) MR2824757
  8. Grove, E.A., Ladas, G., Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005. (2005) Zbl1078.39009MR2193366
  9. Karakostas, G., Convergence of a difference equation via the full limiting sequences method, Differential Equations Dynam. Systems 1 (4) (1993), 289–294. (1993) Zbl0868.39002MR1259169
  10. Karatas, R., Cinar, C., Simsek, D., On the positive solution of the difference equation x n + 1 = x n - 5 1 + x n - 2 x n - 5 , Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500. (2006) MR2287595
  11. Kocic, V.L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993. (1993) Zbl0787.39001MR1247956
  12. Kruse, N., Nesemann, T., 10.1006/jmaa.1999.6384, J. Math. Anal. Appl. 235 (1) (1999), 151–158. (1999) Zbl0933.37016MR1758674DOI10.1006/jmaa.1999.6384
  13. Kulenović, M.R.S., Ladas, G., Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002. (2002) Zbl0981.39011MR1935074
  14. Levy, H., Lessman, F., Finite Difference Equations, Dover, New York, NY, USA, 1992. (1992) MR1217083
  15. Sedaghat, H., 10.1080/10236190802054126, J. Differ. Equations Appl. 15 (3) (2009), 215–224. (2009) Zbl1169.39006MR2498770DOI10.1080/10236190802054126
  16. Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I., On the recursive sequence x n + 1 = x n - 5 1 + x n - 1 x n - 3 , Int. J. Pure Appl. Math. 28 (1) (2006), 117–124. (2006) Zbl1116.39005MR2227156
  17. Simsek, D., Cinar, C., Yalcinkaya, I., On the recursive sequence x n + 1 = x n - 3 1 + x n - 1 , Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480. (2006) Zbl1157.39311MR2287592
  18. Stević, S., More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004), 80–84. (2004) Zbl1069.39024MR2077785
  19. Stević, S., 10.1016/j.aml.2005.05.014, Appl. Math. Lett. 19 (5) (2006), 427–431. (2006) Zbl1095.39010MR2213143DOI10.1016/j.aml.2005.05.014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.