Universally divergent Fourier series via Landau's extremal functions
Gerd Herzog; Peer Chr. Kunstmann
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 2, page 159-168
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHerzog, Gerd, and Kunstmann, Peer Chr.. "Universally divergent Fourier series via Landau's extremal functions." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 159-168. <http://eudml.org/doc/270134>.
@article{Herzog2015,
abstract = {We prove the existence of functions $f\in A(\mathbb \{D\})$, the Fourier series of which being universally divergent on countable subsets of $\mathbb \{T\} = \partial \mathbb \{D\}$. The proof is based on a uniform estimate of the Taylor polynomials of Landau’s extremal functions on $\mathbb \{T\}\setminus \lbrace 1\rbrace $.},
author = {Herzog, Gerd, Kunstmann, Peer Chr.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fourier series; universal functions; Landau's extremal functions; Fourier series; universal functions; Landau's extremal functions},
language = {eng},
number = {2},
pages = {159-168},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Universally divergent Fourier series via Landau's extremal functions},
url = {http://eudml.org/doc/270134},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Herzog, Gerd
AU - Kunstmann, Peer Chr.
TI - Universally divergent Fourier series via Landau's extremal functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 159
EP - 168
AB - We prove the existence of functions $f\in A(\mathbb {D})$, the Fourier series of which being universally divergent on countable subsets of $\mathbb {T} = \partial \mathbb {D}$. The proof is based on a uniform estimate of the Taylor polynomials of Landau’s extremal functions on $\mathbb {T}\setminus \lbrace 1\rbrace $.
LA - eng
KW - Fourier series; universal functions; Landau's extremal functions; Fourier series; universal functions; Landau's extremal functions
UR - http://eudml.org/doc/270134
ER -
References
top- Anderson J.M., Clunie J., Pommerenke Ch., On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. Zbl0292.30030MR0361090
- Beise H.-P., Müller J., On the boundary behaviour of Taylor series in Hardy and Bergman spaces, preprint, 2014.
- Bernal-González L., 10.1007/s00020-012-1984-6, Integral Equations Operator Theory 74 (2012), 271–279. Zbl1282.47008MR2983066DOI10.1007/s00020-012-1984-6
- Fejér L., 10.1007/BF02543853, Acta Math. 49 (1926), 183–190. MR1555240DOI10.1007/BF02543853
- Grosse-Erdmann K.-G., 10.1090/S0273-0979-99-00788-0, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345–381. Zbl0933.47003MR1685272DOI10.1090/S0273-0979-99-00788-0
- Grosse-Erdmann K.-G., Peris Manguillot A., Linear Chaos, Universitext, Springer, London, 2011. Zbl1246.47004MR2919812
- Kahane J.-P., 10.1007/BF02791536, J. Anal. Math. 80 (2000), 143–182. Zbl0961.42001MR1771526DOI10.1007/BF02791536
- Katsoprinakis E., Nestoridis V., Papachristodoulos C., Universality and Cesàro summability, Comput. Methods Funct. Theory 12 (2012), 419–448. Zbl1262.30071MR3058515
- Landau E., Gaier D., Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Springer, Berlin, 1986. Zbl0601.30001MR0869998
- Müller J., 10.1016/j.crma.2010.10.026, C.R. Math. Acad. Sci. Paris 348 (2010), 1155–1158. Zbl1204.42008MR2738918DOI10.1016/j.crma.2010.10.026
- Pogosyan N.B., Universal Fourier series, Uspekhi Mat. Nauk 38 (1983), 185–186. Zbl0525.42003MR0693740
- Rudin W., Real and Complex Analysis, McGraw-Hill Book Co., New York, 1987. Zbl1038.00002MR0924157
- Wintner A., The theorem of Eneström and the extremal functions of Landau-Schur, Math. Scand. 5 (1957), 236–240. Zbl0081.07103MR0098192
- Zygmund A., Trigonometric Series. Vol. I, II, Cambridge University Press, Cambridge, 2002. MR1963498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.