# Note on partitions of planar graphs

Izak Broere; Bonita S. Wilson; Jozef Bucko

Discussiones Mathematicae Graph Theory (2005)

- Volume: 25, Issue: 1-2, page 211-215
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topIzak Broere, Bonita S. Wilson, and Jozef Bucko. "Note on partitions of planar graphs." Discussiones Mathematicae Graph Theory 25.1-2 (2005): 211-215. <http://eudml.org/doc/270142>.

@article{IzakBroere2005,

abstract = {Chartrand and Kronk in 1969 showed that there are planar graphs whose vertices cannot be partitioned into two parts inducing acyclic subgraphs. In this note we show that the same is true even in the case when one of the partition classes is required to be triangle-free only.},

author = {Izak Broere, Bonita S. Wilson, Jozef Bucko},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {planar graph; hereditary property of graphs; forest and triangle-free graph; triangle-free graph},

language = {eng},

number = {1-2},

pages = {211-215},

title = {Note on partitions of planar graphs},

url = {http://eudml.org/doc/270142},

volume = {25},

year = {2005},

}

TY - JOUR

AU - Izak Broere

AU - Bonita S. Wilson

AU - Jozef Bucko

TI - Note on partitions of planar graphs

JO - Discussiones Mathematicae Graph Theory

PY - 2005

VL - 25

IS - 1-2

SP - 211

EP - 215

AB - Chartrand and Kronk in 1969 showed that there are planar graphs whose vertices cannot be partitioned into two parts inducing acyclic subgraphs. In this note we show that the same is true even in the case when one of the partition classes is required to be triangle-free only.

LA - eng

KW - planar graph; hereditary property of graphs; forest and triangle-free graph; triangle-free graph

UR - http://eudml.org/doc/270142

ER -

## References

top- [1] K. Appel and W. Haken, Every planar graph is four colourable, Illinois J. Math. 21 (1977) 429-567. Zbl0387.05010
- [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [3] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs, Discrete Math. 212 (2000) 19-27, doi: 10.1016/S0012-365X(99)00205-8. Zbl0945.05022
- [4] G. Chartrand and H. H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612. Zbl0175.50505
- [5] T. Kaiser and R. Skrekovski, Planar graph colorings without short monochromatic cycles, J. Graph Theory 46 (2004) 25-38, doi: 10.1002/jgt.10167. Zbl1042.05044
- [6] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283. Zbl56.1141.03
- [7] P. Mihók, Minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E. Zbl0911.05043
- [8] C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory (B) 65 (1995) 305-314, doi: 10.1006/jctb.1995.1057. Zbl0840.05070

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.