Circuit bases of strongly connected digraphs

Petra M. Gleiss; Josef Leydold; Peter F. Stadler

Discussiones Mathematicae Graph Theory (2003)

  • Volume: 23, Issue: 2, page 241-260
  • ISSN: 2083-5892

Abstract

top
The cycle space of a strongly connected graph has a basis consisting of directed circuits. The concept of relevant circuits is introduced as a generalization of the relevant cycles in undirected graphs. A polynomial time algorithm for the computation of a minimum weight directed circuit basis is outlined.

How to cite

top

Petra M. Gleiss, Josef Leydold, and Peter F. Stadler. "Circuit bases of strongly connected digraphs." Discussiones Mathematicae Graph Theory 23.2 (2003): 241-260. <http://eudml.org/doc/270150>.

@article{PetraM2003,
abstract = {The cycle space of a strongly connected graph has a basis consisting of directed circuits. The concept of relevant circuits is introduced as a generalization of the relevant cycles in undirected graphs. A polynomial time algorithm for the computation of a minimum weight directed circuit basis is outlined.},
author = {Petra M. Gleiss, Josef Leydold, Peter F. Stadler},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {directed graphs; cycle space; relevant circuits; minimum length basis},
language = {eng},
number = {2},
pages = {241-260},
title = {Circuit bases of strongly connected digraphs},
url = {http://eudml.org/doc/270150},
volume = {23},
year = {2003},
}

TY - JOUR
AU - Petra M. Gleiss
AU - Josef Leydold
AU - Peter F. Stadler
TI - Circuit bases of strongly connected digraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2003
VL - 23
IS - 2
SP - 241
EP - 260
AB - The cycle space of a strongly connected graph has a basis consisting of directed circuits. The concept of relevant circuits is introduced as a generalization of the relevant cycles in undirected graphs. A polynomial time algorithm for the computation of a minimum weight directed circuit basis is outlined.
LA - eng
KW - directed graphs; cycle space; relevant circuits; minimum length basis
UR - http://eudml.org/doc/270150
ER -

References

top
  1. [1] A.T. Balaban, D. Farcasiu, and R. B anica, Graphs of multiple 1,2-shifts in carbonium ions and related systems, Rev. Roum. Chem. 11 (1966) 1205-1227. 
  2. [2] R. Balducci and R.S. Pearlman, Efficient exact solution of the ring perception problem, J. Chem. Inf. Comput. Sci. 34 (1994) 822-831, doi: 10.1021/ci00020a016. 
  3. [3] C. Berge, Graphs (North-Holland, Amsterdam, NL, 1985). 
  4. [4] B. Bollobás, Modern Graph Theory (Springer, New York, 1998). 
  5. [5] L.O. Chua and L. Chen, On optimally sparse cycle and coboundary basis for a linear graph, IEEE Trans. Circuit Theory 20 (1973) 54-76. 
  6. [6] G.M. Downs, V.J. Gillet, J.D. Holliday and M.F. Lynch, Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci. 29 (1989) 172-187, doi: 10.1021/ci00063a007. 
  7. [7] D.A. Fell, Understanding the Control of Metabolism (Portland Press, London, 1997). 
  8. [8] A. Galluccio and M. Loebl, (p,q)-odd graphs, J. Graph Theory 23 (1996) 175-184, doi: 10.1002/(SICI)1097-0118(199610)23:2<175::AID-JGT8>3.0.CO;2-Q Zbl0859.05047
  9. [9] P.M. Gleiss, P.F. Stadler, A. Wagner and D.A. Fell, Relevant cycles in chemical reaction network, Adv. Cmplx. Syst. 4 (2001) 207-226, doi: 10.1142/S0219525901000140. Zbl1028.05108
  10. [10] M. Hartmann, H. Schneider and M.H. Schneider, Integral bases and p-twisted digraphs, Europ. J. Combinatorics 16 (1995) 357-369, doi: 10.1016/0195-6698(95)90017-9. Zbl0830.05034
  11. [11] D. Hartvigsen, Minimum path bases, J. Algorithms 15 (1993) 125-142, doi: 10.1006/jagm.1993.1033. Zbl0784.68041
  12. [12] D. Hartvigsen and R. Mardon, When do short cycles generate the cycle space, J. Combin. Theory (B) 57 (1993) 88-99, doi: 10.1006/jctb.1993.1008. Zbl0723.05079
  13. [13] D. Hartvigsen and R. Mardon, The all-pair min-cut problem and the minimum cycle basis problem on planar graphs, SIAM J. Discrete Math. 7 (1994) 403-418, doi: 10.1137/S0895480190177042. Zbl0823.90038
  14. [14] J.D. Horton, A polynomial-time algorithm to find the shortest cycle basis of a graph, SIAM J. Comput. 16 (1987) 359-366, doi: 10.1137/0216026. Zbl0632.68064
  15. [15] D.B. Johnson, Finding all the elementary circuits of a directed graph, SIAM J. Comput. 4 (1975) 77-84, doi: 10.1137/0204007. Zbl0275.05112
  16. [16] A. Kaveh, Structural Mechanics: Graph and Matrix Methods (Research Studies Press, Exeter, UK, 1992). Zbl0858.73002
  17. [17] J.B. Kruskal, On the shortest spanning subgraph of a graph and the travelling salesman problem, Proc. Amer. Math. Soc. 7 (1956) 48-49, doi: 10.1090/S0002-9939-1956-0078686-7. 
  18. [18] M. Las Vergnas, Sur le nombre de circuits dans un tournnoi fortement connexe, Cahiers C.E.R.O. 17 (1975) 261-265. 
  19. [19] D. Marcu, On finding the elementary paths and circuits of a digraph, Polytech. Univ. Bucharest Sci. Bull. Ser. D: Mech. Engrg. 55 (1993) 29-33. 
  20. [20] R.T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton NJ, 1970). Zbl0193.18401
  21. [21] G.F. Stepanec, Basis systems of vector cycles with extremal properties in graphs, Uspekhi Mat. Nauk. 2, 19 (1964) 171-175 (Russian). Zbl0151.33402
  22. [22] K. Thulasiraman and M.N.S. Swamy, Graphs: Theory and Algorithms (J. Wiley & Sons, New York, 1992), doi: 10.1002/9781118033104. Zbl0766.05001
  23. [23] P. Vismara, Reconnaissance et représentation d'éléments structuraux pour la description d'objets complexes, Application à l'élaboration de stratégies de synthèse en chimie organique (PhD thesis, Université Montpellier II, France, 1995) 95-MON-2-253. 
  24. [24] P. Vismara, Union of all the minimum cycle bases of a graph, Electr. J. Combin. 4 (1997) 73-87. Paper No. #R9 (15 pages). Zbl0885.05101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.